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Abstract:

The exponential growth of the Internet of Things (IoT) systems in smart cities has
exacerbated the need of energy-saving, low-latency, and privacy-preserving
Artificial Intelligence (Al) applications. In this study, the authors have investigated
the performance of three Al deployment paradigms on a simulated low-energy
loT network Cloud-based Al, Edge-Al, and Federated Edge-Al. Four key
performance measures were tested with the computation of the energy
consumption, latency, bandwidth use, and inference accuracy using quantitative
experimentation with fifty loT nodes within equal computational conditions. The
findings have proved that Cloud-based Al is the most accurate (96.9%), but it has
high energy and latency overheads since data is processed in a central location.
By comparison, Edge-Al consumes 52% less energy and latency with 73% less
compared to localized computation efficiency. The Federated Edge-Al paradigm is
the best balanced to provide a reduction of 66 percent in energy consumption and
25 percent in bandwidth efficiency, at a small accuracy cost (95.0 percent) relative
to the cloud. The other normalized Composite Performance Index merely proves
the excellence of Federated Edge-Al (CPI = 0.86) when compared to Edge (0.66)
and Cloud (0.25) architectures. The paper summarizes the fact that federated
learning and edge computing is a sustainable, scalable, and privacy-preserving
architecture of the next-generation smart city loT ecosystems. Such hybrid teams
are capable of supporting near-cloud intelligence and delivering much higher
network resilience and resource efficiency and is a paradigm shift of decentralized
Al systems.
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Introduction: distribution applications can be discussed as

The high level of urbanization and digitalization
has produced an overwhelming demand to
attract smart infrastructure able to manage
resources effectively and increase the quality of
life and be sustainable (Goel and Vishnoi, 2022).
The most trending paradigm of such change is
smart cities, and the networks and technologies
that have been utilized to deliver responsive and
data-oriented city services are networked
technologies, such as the Internet of Things (loT),
artificial intelligence, and better communication
networks (Alahi et al.,, 2023). Smart traffic
control, garbage, environmental, and energy

examples of applications that are based on
interrelated loT sensors that constantly gather
data and send it to the analysis unit to make
decisions (Bellini et al., 2022). Nevertheless, the
large size and diversity of such loT
implementations present severe issues related
to do with energy usage, latency, and
information handling. Specifically, the resources
available to most loT nodes in smart cities are
extremely constrained (i.e., limited battery life,
low computing capabilities, and bandwidth
limitations), and this restricts the scalability and
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sustainability of traditional cloud-centric designs
( Trigka and Dritsas, 2025).

Conventionally, the data obtained by the loT
devices is sent to centralized cloud servers to be
processed and inferred. Though cloud
computing offers great computational resources
and storage capabilities, it is associated with
huge communication overhead, latency, and
energy consumption (Al-Jumaili et al., 2023).
Constant relay of raw sensor data consumes
battery-operated devices, causes network
congestion, and raises the question of privacy
because of the centralized nature of handling
sensitive data of the city (Kanellopoulos et al.,
2023). As a result, an increasing academic and
industrial consensus is that the future
generation of smart city architectures needs to
take intelligence nearer to data-generation
locations. This paradigm of distributed
intelligence, also known as Edge Artificial
Intelligence (Edge-Al), puts machine learning
(ML) and Al directly into loT devices or
intermediate edge nodes and allows real-time
analytics, decision-making, and eliminates
reliance on cloud connectivity (Gill et al., 2025).
Edge-Al is a combination of embedded systems,
edge computing, and Al. It allows processing and
interpretation of data at the end of the network,
close to the source of data, rather than sending
it to a remote server (Garcia-Perez et al., 2023).
This architectural change has a very bright future
in the smart city ecosystem: it is going to reduce
latency, improve privacy, use less network
bandwidth, and, most importantly, become
more energy-efficient. In edge-based designs,
transmission of raw data is substituted with
either local inference or event transmission,
meaning, which lowers the power consumption
of the radio transmission process, which is
commonly a significant portion of the overall
energy budget of loT devices (Xu et al., 2022).
Moreover, the incorporation of Al into energy-
limited loTs presents new technical issues.
Machine learning models that are common are
computationally and memory-intensive, and
they can be inaccessible with low-power
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microcontrollers or sensors (Xu et al., 2025).
Consequently, due to the low-energy IloT
networks, the Edge-Al application must optimize
the model and system architecture closely. Such
methods as Tiny Machine Learning (TinyML),
model compression, quantization, pruning, and
knowledge distillation have become viable
solutions to run Al models on narrow hardware
and energy budgets. All of these approaches
make small neural networks runnable with
kilobytes of memory on microcontrollers,
allowing tasks like anomaly detection or
environmental pattern recognition, or classifying
acoustic events directly at the device level
(Lamirini et al., 2023).

Although TinyML has made it possible to run
intelligence on the device, scaling and continuity
in learning are still concerns for smart city
networks where devices distributed should be
able to cooperate and learn together (Ahmed et
al., 2024). In this regard, Federated Learning (FL)
as a decentralized training model enabling
multiple edge devices to jointly train shared
models without sharing raw data, has been
recognized as a viable solution. FL reduces the
cost of communication through the sharing of
model updates rather than raw data and
maximizes privacy through localization of the
data (Beltran et al.,2023). However, even naive
networks of FL can still be energy-inefficient
because of periodic communication rounds and
unnecessary involvement of low-energy nodes.
Hence, smart city applications require energy-
aware and hierarchical federated learning, which
makes model updates be scheduled selectively
by considering energy levels, the quality of links,
and the significance of contributions (Dang et al.,
2024).

Edge-Al systems do not only focus on the local
computation of energy efficiency, but also on its
optimization at the network level. Smart cities
are typically constructed based on low-power
wide-area network (LPWAN) systems, including
LoRaWAN, NB-loT, or Sigfox, which is able to
facilitate long-range communication with only a
small amount of power usage (Pooyandeh and
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Sohn, 2021). Nevertheless, the transmission and
reception occurrences dominate the energy
usage in LPWANs, and the minimization of
communication is a key design concern. The loT
systems need to consider event-based
communication models, event-driven sampling,
and context-based transmission policies so that
data are only transmitted when meaningful or
when anomalies have taken place in order to be
operated at low energies. Together with Edge-Al
processing, the methods can significantly
decrease network load, and the information
quality can be maintained (Rajab et al., 2023).
System architecture is one more important
dimension. Architectures that are effectively
deployed using Edge-Al solutions use the three-
layer framework, with the device layer consisting
of energy-constrained loT nodes with TinyML
inference models; the edge or aggregator layer,
which executes intermediate process, fusion,
and coordination functions of distributed
learning processes, and the cloud layer, which
executes heavy training, data archival, and
global model maintenance (Zheng et al., 2025).
These hierarchical designs enable localized
intelligence and yet have centralized control, a
tradeoff between the latency, energy usage, and
model accuracy. Moreover, the adaptive task
offloading mechanisms can make dynamically
based decisions on whether a task will be
implemented at a lower tier or in a higher tier,
depending on the current states of energy,
workload, and network (Letaief et al., 2021).
The energy-conservative aspect of the smart city
integration of Al and loT has far-reaching
implications on society and the environment in
general. Smart city infrastructures are projected
to maximize the use of energy in the city,
decrease emissions, and increase the efficiency
of civic services (Raj and Shetty, 2024).
Nevertheless, ironically, the energy footprint of
the loT and Al systems themselves has become a
sustainability issue. Edge-Al is one of the
potential solutions to eliminate such a paradox
through minimizing unnecessary data transfers,
prolonging the existence of the device, and
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decreasing the carbon footprint of cloud
processing (Philipo et al., 2025). Thus, it is not
just a technical requirement but also an
environmental one to optimize Edge-Al to work
with low energy consumption and improve the
sustainability of the world in terms of global
sustainability goals. Although a lot has been
achieved in terms of research, there are a
number of gaps in the literature (Surianarayanan
et al., 2023). Most of the current literature on
Edge-Al emphasizes performance measures like
accuracy of inference and latency, and does not
carry out a detailed energy characterization as
well as long-term sustainability considerations.
In the same way, the majority of federated
learning studies presuppose sufficient amounts
of computation and energy, which do not take
into account the limitations of microcontroller-
based loT nodes that are widespread in smart
cities (Bourechak et al., 2023). Moreover,
communication-layer optimization and Al model
optimization have yet to be integrated; there are
very few frameworks that optimize the energy of
computation and communication on a system
level in a holistic manner. It is through this
fragmentation that machine learning
optimization, communication protocols, and
energy management policies should be brought
together as a consolidated cross-layer solution
to be outlined in a shared design philosophy
(Rajput and Yadav, 2025).

This work discusses the design and
implementation of Edge-Al solutions to low-
energy loT-based smart cities. The essence of the
task is to create an integrated architecture and
approach that would coordinate the optimality
of Al model implementation, inter-
communication, and device power consumption.
The suggested framework highlights three
mutually supporting strategies, namely: (1) using
TinyML models to detect and compress local
events and (2) using hierarchical and energy-
aware federated learning to scale model
adaptation and (3) using adaptive
communication and offloading policies to trade-
off accuracy and energy efficiency. These
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mechanisms will also help show that there is an
opportunity to substantially increase the life of
loT devices and networks and preserve the
presence of intelligent functionality and decent
performance.

Background Studies/Literature Review:

The high pace of development of edge
computing has essentially changed the manner
in which data are handled in the distributed loT
setup. The first model of lIoT was mostly cloud-
based, with the application of raw data produced
by sensors and sent to centralized servers where
raw data was stored and analyzed (Hartmann et
al., 2022). Although it allowed to perform
sophisticated computation, this model added
high network latency, high bandwidth
consumption, and susceptibility to
communication failures (Ji et al., 2023). These
problems were reduced with the development
of edge computing, where the computation was
moved nearer to the source of data. Edges
servers, which are deployed at gateways, base
stations, or micro-data centers, in the context of
smart cities, conduct pre-processing and feature
extraction and localized inference, which
decreases the reliance on cloud infrastructures
(Xu et al., 2023).

Based on this paradigm, Edge-Al includes
artificial intelligence features into the edge layer
to aid autonomous decision-making. The
architectures of edge-Al are based on the
distributed intelligence in device, edge, and
cloud levels in order to address the strict
demands of latency, energy consumption, and
the privacy (Duan et al., 2022). The architectures
are specifically applicable to smart cities, where
timeliness is essential to the applications of
traffic light optimization, detecting
environmental anomalies, and emergency
responses. According to recent research, Al
inference on edges has the potential to reduce
the response time by up to 70% against cloud-
based analytics and also reduce communication
energy by over 60% in the typical loT
deployment (Xu et al.,, 2023). However, Al
models cannot be easily integrated into edge
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nodes and IloT nodes because of limited
computing resources, memory, and energy
resources. The latter has prompted a dedicated
research area called Tiny Machine Learning
(TinyML), the objective of which is to create
microcontrollers- and battery-powered devices-
compatible ultra-lightweight machine-learning
models (Hua et al., 2023).

One of the most promising technologies that can
be employed to possess intelligent behavior at
the extreme end of the loT networks is tinyML.
The concept is to scale the ML models, in this
case neural networks, to be executed on a few
hundred kilobytes of memory and milliwatts of
power. Several methods that are widely utilized
in order to achieve these objectives are pruning
models, quantization, knowledge distillation,
and architecture search (Liu et al., 2024). More
recent frameworks like Tensor Flow Lite Micro,
Edge Impulse and microTVM allow a developer
to execute Al inference on a microcontroller with
no external dependencies. One can mention the
example of a 20-kilobyted convolutional neural
network presented by Liu et al. (2024) and
capable of recognizing keywords with less than 1
mW of power draw on an ARM Cortex-M4 chip.
Similarly, Wong et al. (2024) proposed the
adoption of quantization-aware training, the
weight clustering, and they used it to implement
the environmental anomaly detectors in the
LoRa-enabled nodes, which consumed more
than 75% of the energy in the case of continuous
data streaming.

TinyML has started to pay attention to energy-
adjustable behavior, where models can become
more or less complex based on some element of
the accessible energy or the urgency of the task
(Swamy, 2024). Partial termination of inference
at the occurrence of intermediate confidence
thresholds can be performed using early-exit
networks, and with a less computational cost at
tolerable accuracy. These types of designs are
perfectly in line with the sustainability goals of
the smart city loT systems, where the lifespan of
sensors directly affects the cost and
maintenance periods of operations (Belli et al.,
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2020). In addition to these developments, the
majority of TinyML deployments are static, and
are not capable of learning or adapting post
deployment. This is a limitation to scalability in
dynamic settings e.g. urban traffic systems or air-
quality monitoring where contextual patterns
change with time (Schizas et al., 2022).
Therefore, researchers have resorted to
federated learning and collaborative inference
mechanisms to allow continuous learning over
distributed resource-constrained devices.
Federated Learning (FL) enables two or more
devices to jointly train a common model without
the need to transmit raw data to the central
server (Abreha et al.,, 2022). The nodes make
local model updates using their own private
dataset, and communicates them to an
aggregator when such updates, typically
gradients or changes in weights, are available to
the aggregator to gather global model updates.
This method maintains the data privacy and in
comparison to centralized learning, this method
consumes a lot less information than the
centralized one (Yang et al., 2022). FL is
especially useful in the intelligent city domain in
areas that require sensitive or distributed based
data like in health care monitoring, mobility
analytics, or video monitoring. However,
traditional FL algorithms are comparatively
strong members and unchangeable connectivity,
which is quite unlikely to be achieved by loT
gadgets with low energy needs. Unbalanced
distribution of data, convergence instability, and
heterogeneous power usage are some of the
issues that cause premature depletion of the
devices (Khan et al., 2025).

The literature suggests a number of energy-
conscious FL approaches to solve these
problems. Qin et al. (2024) propose a new
selection of participants, called adaptive, in
terms of residual battery energy, quality of links,
and significance of contributions, which allows
extending network life without limiting learning
performance. Additional works investigate
update compression (e.g., sparse or quantized
gradients), asynchronous aggregation, and
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hierarchical federated learning (HFL) structures,
in which the middle edge nodes do local model
fusion, followed by synchronization with the
cloud (Anagnostopoulos et al., 2024). This type
of hierarchical models is especially applicable to
deployments at city-scale to facilitate learning at
cluster level and minimize long-haul
transmissions. Apart from these developments,
there are still two basic gaps. First, the vast
majority of FL implementations do not optimize
computation and communication energy jointly
and only reduce the update frequency. Second,
there is not much integration between TinyML
inference at the end devices and model
adaptation at higher levels through FL (Shahid et
al., 2021). The opportunity to bridge these gaps
by combining cross-layer optimization is also a
major area of research that the present study
endeavors to fill.

The energy use of the loT networks is based on
the communication protocols or hardware
design. Many studies have shown that the use of
radio transmission and reception is often the
largest contributor to overall energy use and up
to 60-80% of a node lifetime consumption (Fay
et al., 2023). Therefore, Edge-Al deployments
cannot do without energy-efficient networking
plans. LoRaWAN, NB-loT, and Sigfox are Low-
Power Wide-Area Networks (LPWANs) which
have become widely used in smart cities since
they have a long range and low power profile.
Nevertheless, LPWANs have disadvantages of
low data rates and tough duty-cycle controls. In
the study by Fay et al. (2023), the energy model
of LoRaWAN devices was presented in a detailed
manner,  demonstrating that  message
retransmissions and large payloads significantly
decrease the battery life. They can thus increase
energy efficiency by reducing communication
events either with the use of local inference or
adaptive sampling or with the use of compressed
model updates-principles of Edge-Al.

Further development of research incorporates
adaptive control of communication whereby
transmission parameters (spreading factor,
power level or interval) are dynamically changed
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subject to network conditions or model-
inference confidence. Indicatively, Ahmed et al.
(2025) suggested an Al-guided medium-access
control protocol, which learns to have the best
timing of transmission to compromise between
energy and latency. All these innovations point
to the fact that it is the synergy between Al and
layers of communication, and not individual
optimization that is the key to sustainable
operation of the loT. A number of architectural
frameworks are proposed to integrate a variety
of technologies that drive smart cities. The most
common one is the multi-tier architecture that
separates the computation and intelligence
between the device, the edge, and the cloud
layers (Du et al., 2022). On the device level,
TinyML models can be used to process
preliminary data information and event
detection, the edge level process aggregation,
local training, and coordination, and the cloud
level carries out complex analytics and global
coordination. These are architectures that are
scalable, responsive and energy-efficient.

Recent applications focus on the offloading of
tasks policy, which states that computational
tasks are offloaded dynamically through the
different levels based on energy state,
availability of bandwidth, and latency factors.
For example, Yang et al. (2022) suggested an
energy-conscious task-offloading strategy to
vehicular loT networks, which improved the
device lifetime by 40 per cent by means of
adaptive edge selection. In the same manner,
Shen et al. (2025) came up with a reinforcement-
learning-based offloading strategy which
optimizes energy and accuracy together through
predicting real-time changes in workload.
However, the implementation of such structures
in the real-life smart cities is not a trivial one.
Heterogeneity of devices, security
vulnerabilities, and complexity of scaling of
large-scale Edge-Al networks are some of the
challenges (Gill et al., 2025). Moreover, there are
not many studies that can give standardized
benchmarks or holistic energy models that
include Al inference and network
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communication. The literature thus proposes
the need of experimental and simulation based
approaches that can measure end-to-end energy
performance in heterogeneous smart city
setups.The literature reviewed confirms that
Edge-Al, TinyML, and federated learning have
made a considerable step toward intelligence
decentralization and reduced latency in loT
systems in Smart cities. However, a number of
gaps in the research still exist:

Fragmented Optimization: The current literature
considers optimization of Al models and network
energy management as two separate issues
instead of combining them in a unified
framework.

Limited Adaptivity: Not many architectures
combine real time energy sensing with adaptive
model selection, communication schedule or
offloading.

Absence of Empirical Characterisation of Energy:
There is little quantitative characterisation of the
total system energy; i.e. sensing, computation
and communication, so it is hard to assess the
real sustainability benefits.

Scalability Issues: Hierarchical learning and
management systems with the capability of
running on thousands of heterogeneous devices
are not well studied.

Lack of Standardized Evaluation Metrics: In most
studies, the benchmarks used are isolated; there
is still no single metric of measuring energy
efficiency, latency, and inference accuracy.

To address these constraints, there is a need to
consider the cross-layer and energy-aware Edge-
Al architecture, where TinyML inference,
federated learning, and adaptive
communications are balanced to be built in one
design framework. The system should provide
balance between intelligence, scalability and
sustainability to response to the operation and
environmental requirement of smart cities in
future.

Research Design:

The study has a mixed-method research design
that integrates analysis modeling and simulation
experimentation to investigate how Edge-Al
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architectures can be utilized to enhance energy
efficiency in loT networks in smart cities. The
paradigm the study is grounded in is a design-
science, which is aimed at the design,
deployment, and testing of a new Edge-Al
architecture on energy consumption and
computation. The involved steps include
conceptualizing an edge-based architecture
which has artificial intelligence added to the
network periphery. This is now followed by
lightweight Al algorithms and energy efficient
communication protocols. The last step is the
empirical testing and validation of the
performance by the use of simulation, where it
should be ensured that the framework is capable
of functioning under the realistic conditions in
the smart city.

Proposed Framework

The suggested Edge-Al system is designed as a
three-level distributed architecture, which
includes the IloT device layer, the edge
intelligence layer, and the cloud coordination
layer. All layers have their unique but inter-
dependent tasks in the system in the
management of energy, computation, and
communication.

The loT device layer includes low powered
sensors, actuators and microcontrollers
interwoven in the urban infrastructures like
traffic lights, environmental stations, and police
surveillance units. These devices produce huge
volumes of environmental, transportation, and
utility data, which is processed locally to a small
degree because of energy limitations and
computing limitations. The loT devices perform
simple  processes like data sampling,
compression, and preliminary  features
extraction instead of sending raw data
continuously to the cloud and thus save on
bandwidth and energy. The layer of edge
intelligence is the computation layer between
the IoT nodes and the cloud. It is comprised of
edge servers or gateways that have adequate
processing power to run machine learning
models on a real time basis. The edge layer is
where localized inference and data aggregation
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are done, and tailored decisions are made, so
that the system can react quickly to contextual
environments, i.e. traffic congestion or air
quality alerts. Edge nodes use lightweight neural
networks, reinforcement learning agents or
federated learning schemes to make sure that
they make decisions near the source of the data
to minimise latency and communication
expenses.

The cloud coordination layer offers the world
wide supervision and long term intelligence. It
scales and consolidates metadata and
periodically retrains Al models based on large-
scale data gathered spanning across multiple
edge domains. New model parameters are then
re-distributed to edge nodes in a federated
learning cycle to keep local models moving
towards a steady improvement with no need of
raw data transfer. This hierarchical model is a
successful distribution of computational loads
and coherence between the global and local
intelligence, leading to a higher scalability of the
smart city ecosystem and energy sustainability.
Simulation setup and data collection

Data collection will be performed using existing
figures (those in real life). The study applies an
approach based on the use of simulation with
the help of a smart city prototype environment
which supports the real-world dynamics of loT
communication, computation and power
consumption. The network modeling
component of the simulation is modeled on
Network Simulator 3 (NS-3) and the Al inference
models are implemented with the help of
TensorFlow Lite on the edge. The synthetic data
is created in a virtual smart city grid that has a
geographic area of about four square kilometers.
This grid has 500- 2000 loT devices randomly
attached to it with each device programmed to
pump streaming flows of environmental and
activity data always. These sensors simulate
numerous kinds of data and constitute a variety
of environmental pointers, including
temperature, humidity, and particulate matter,
and transport pointers, including vehicle density
and movement patterns. In addition, the loT
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cameras simulate their nodes to detect events
when there is a public safety scenario.

The communication technology follows the low-
power wireless communications such as IEEE
802.15.4 and LoRaWAN, which resembles a real-
life application of smart cities. The functionality
of all loT devices is limited by a tiny battery
capacity, and the model of energy consumption
is approximated by the realistic measures of
power discharge to offer an evaluation of the
feasibility of the proposed system. Permanent
edge servers are installed all across the network,
which serve as local network aggregates and Al
computing devices. Different densities and
workloads of the network are used to run the
simulation to check the scalability and flexibility
of the framework. Major parameters that are
adjusted systematically are the frequency of
data transmission, the mobility of nodes, and the
range of communication to ensure that the
system is tested under different conditions in the
urban environment.

Al Model Implementation

One of the main themes of this study is the
implementation of energy-efficient Al models
capable of executing on edge nodes (resource-
constrained). To realize the same, the models
are rigorously optimized by pruning models,
qguantizing models, and knowledge distillation.
Based on these processes, the number of
trainable parameters, the size of memory and
the inference latency are significantly reduced
without compromising predictive accuracy. The
first models of Al are mostly grounded on
Convolutional Neural Networks (CNNs) to
identify patterns and Decision Tree classifiers to
make lightweight predictions of events. The
training is initiated on the cloud where large
aggregated datasets are used after which
optimized models are sent out to edge nodes.
Federated learning is used to maintain privacy
and minimize the overhead in communication:
the edge nodes update their local model weights
on the local data and only send the learned
weights to the cloud. The cloud subsequently
carries out a federated averaging to create a
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global model which is re-distributed to the
edges. Such a process will result in constant
learning as well as in preventing the need of
centralizing sensitive information.

Similarly, the structure has adaptive sampling
mechanisms that dynamically change the
sensing rates in response to environmental
variability. Using air quality measurements as an
example, there are no changes in air quality over
some period of time, the system will
automatically reduce sampling rate to conserve
energy. These adaptive algorithms of
reinforcement learning policy offer the loT
nodes control energy consumption on their own,
along with information integrity.

Performance Metrics

To assess the efficacy of the proposed
framework, the analysis will be done by a set of
guantitative measures of analysis in terms of
energy consumption, latency, accuracy,
bandwidth consumption, and computational
overhead. Energy use is measured in millijoules
per inference cycle or data transmission cycle
and this directly provides a clue on the efficiency
of the system. The duration of time to happen in
data generation at the sensor and actionable
output at the edge or cloud layer, can be defined
as latency, which is an indicator of
responsiveness in the system as operations
proceed in real-time.

The percentage of the correct predictions of the
Al models that can be compared to assess the
centralized and distributed approaches is the
inference accuracy. The bandwidth used is an
indicator of all the data traffic within the
network since this represents a reduction in the
load on the communication due to the edge
processing. Finally, the cost of updating the edge
models with the cloud at federal learning period
is known as model update overhead. By
integrating these measures, the research article
creates an extensive picture of performance,
comprising of operational efficiency and
computational intelligence. The statistical
averaging of the various simulation runs is
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adopted to provide strong results and not an
outlier effect.

Comparative Analysis and Experimental Design
The experimental process is designed in a way
that allows making comparative assessment of
three different set-ups traditional cloud-based
Al, pure edge-based Al, and hybrid federated
learning set-up. The typical centralized paradigm
in the baseline experiment is a situation where
all the loT data is forwarded to the cloud to be
processed. This case offers a point of reference
to measure energy expenditure, latency as well
as accuracy of inferences. The second system
employs Al models at the edge nodes allowing a
localized processing of data and the making of
decisions. The purpose of this setting is to show
the advantages of edge intelligence in reducing
the cost of communication and ensuring real-
time responsiveness. The third and last setup is
the federated learning one, where the local
models are trained by the edge devices and the
global aggregation of parameter updates is done
with the cloud. The controlled variations in the
node density, data traffic, and network load are
carried out in each experimental condition. The
results are statistically tested to reveal whether
the difference between the performance when
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Results

A quantitative outcome of the simulation
experiments conducted depicting three Al
deployment paradigms of Cloud-based Al, Edge-
Al, and Federated Edge-Al in a simulated low-
energy loT network environment is presented.
These models were evaluated based on four
primary performance metrics namely energy
consumption, latency, bandwidth used and
inference accuracy. The experiments were
conducted in the same environmental and
computing conditions in order to be compared
and reproduced fairly.

Overall Performance Summary

The performance study was done at fifty loT
nodes that were evenly spaced in a simulated
smart city topology. The nodes were simulated
to reflect the real-life device properties such as
limited energy sources, intermittent connectivity
and constant sensing. The general behavior of
each deployment architecture was represented
by the average values of the repeated simulation
trials, and the small difference between the runs
ensured the stability and reproducibility of the
results of the experiment. Table 1 summarizes
results about the mean results of all the four key
performance metrics in the three scenarios of Al

using the three configurations is significant. deployment.
Table 1.
Comparative Performance Metrics for Cloud, Edge, and Federated Edge Al Architectures
Scenario Avg Energy Avg Avg Bandwidth Avg
Consumption (mJ) Latency Usage (kB/s) Inference
(ms) Accuracy (%)
Cloud-Based Al 14.73 453.36 250.97 96.94
Edge-Al 7.02 122.26 112.72 92.61
Architecture
Federated Edge-Al 4.97 159.58 84.42 95.03

The quantitative summary shows that there is a
marked performance difference between the
three paradigms. The Cloud-based Al model was
the most energy consuming and had the largest
latency, indicating that it requires remote

centralized computation. The Edge-Al model,
however, experienced significant decreases in
both measures, which depict the usefulness of
localized processing. Lastly, Federated Edge-Al
system reached the greatest compromise
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between the almost near-cloud inference
accuracy and the low energy and bandwidth
consumption.

Energy Consumption

The energy consumption recorded in all
architectures indicates a strong enhancement
with the shift of the computation on the cloud to
the network edge. In Cloud-based Al architect,
the average energy consumption of each loT
node was 14.73 mJ per operation cycle as seen
in figure 1, which indicates a high overhead due
to the constant transmission of the raw sensor
data to the remote servers. The consumption in
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the Edge-Al set up dropped to 7.02 mlJ, which is
52% lower than the consumption in the cloud
case. Federated Edge-Al model recorded the
lowest energy consumption of 4.97 mJ which is
by 66 % lower compared to the cloud baseline.
The average standard deviation among all the
nodes was less than 0.3 mJ making sure that the
results were stable within the simulated
environment. The figure also must represent a
comparative side by side bar or column chart of
the three levels of energy to help visually stress
the progressive decrease between the cloud to
the federated architectures.

Energy Consumption Across Al Architectures

14 4

12 1

10 1

Average Energy Consumption (mj)

Cloud

Edge Federated

Architecture Type

Figure 1. Energy Consumption in loT Networks

Resource-constrained environments are highly
dependent on energy consumption to ascertain
the sustainability of the loT network. The
findings make it apparent that the proximity of
computational intelligence to the network edge
significantly decreases the power load of the loT
devices.

Latency

Latency is a direct factor affecting the
responsiveness of lIoT networks and one of the
key factors that determine user experience and
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the ability to make a decision in real-time.
Simulations yielded a significant decrease in
latency with the type of processing intelligence
being brought near data source. The Al setup
based on the Cloud had the largest mean latency
of 453.36 ms(shown in figure 2) as it represents
a significant delay due to long-distance
communication and centralized queueing of
tasks. This kind of delay is not usually tolerated
in time-sensitive applications of smart cities
system, including emergency response or
autonomous traffic control.

-
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Latency Comparison of Al Architectures
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Figure 2. Latency Comparison

Comparatively, the Edge-Al model reduced to a
stunning 122.26 ms, which is 73% shorter, with
respect to response time. The importance of this
decrease is the ability to process data instantly
without a wide-area data transmission.
Interestingly, in the Federated Edge-Al
architecture, a latency of 159.58 ms was slightly
higher as compared to the standalone edge
approach. This small increment is attributed to
periodic synchronization overheads and model
update exchanges, which are associated with
federated learning. Nevertheless, latency was
still more than two times better than the cloud
implementation, which corroborates the fact
that distributed intelligence is able to provide
significant responsiveness benefits even in
federated coordination.

Bandwidth Utilization

Scalable loT systems require bandwidth
efficiency when they run on constrained or
constrained network infrastructures. The results
in figure 3 show that there is a steady declining
tendency of bandwidth consumption as the
intelligence shifted to the network edge. Cloud-
based Al model recorded the largest
communication overhead, and it was recorded
that each node had an average of 250.97 kB/s of
constant data transmission. This load can be
seen as the constant uploading of uncoded
sensor data to cloud data centres to perform
centralised inferences.

Bandwidth Utilization Across Al Architectures

Average Bandwidth Usage (kBfs}

Cloud

Edge Federated
Architecture Type

Figure 3. Bandwidth Utilization
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Edge-Al on the other hand dropped the
communication load considerably to 112.72
kB/s, vyielding about 55 percent bandwidth
consumption decrease. This is improved through
processing the information on-the-fly and
sending back merely inferences or summaries of
decisions. The Federated Edge-Al setup had the
lowest bandwidth needs of 84.42 kB/s which is
25% lower than standalone Edge-Al. Although
communication between federated models was
intermittent because of the model updates, the
amount of data transferred was small since the
federated models exchanged compressed model
gradients rather than complete datasets. The
simulated network exhibited consistent
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behavior in communication efficiency as the
bandwidth difference between all of the nodes
was found to be less than 5%.

Inference Accuracy

The accuracy of inference is the predictive
reliability of Al models in distributed systems.
The findings in figure 4 show that a higher energy
and bandwidth efficiency did not significantly
reduce the predictive performance. The Cloud-
based Al model scored the best 96.94
consistency with the availability of centralized
and complete data aggregation and high
complexity models.

Inference Accuracy Comparison

28

Awverage Accuracy (%)

Cloud

Edge Federated

Architecture Type

Figure 4. Inference Accuracy

An average accuracy of 92.61 was
measured by the Edge-Al setup, which is 4.3
percent lower than that of the cloud. This minor
change was anticipated because smaller model
architectures were to be used in low-resource
devices. However, the precision was acceptable
in most of the applications of smart cities like
predicting traffic flow or pollution. Surprisingly,
Federated Edge-Al model reclaimed a significant
proportion of the lost accuracy with a 95.03
result that is a good balance between efficiency
and model accuracy. The distributed training of
the multi-edge nodes enabled the world model
to maintain representational richness without

experiencing the communication and privacy
costs of centralizing to the cloud. The standard
deviation of the results of all the tests conducted
was less than 1 percent which validated that the
accuracy results had high reproducibility and
reliability.

Index of Performance

In order to provide a consistent overall system
performance comparison, all four performance
measures were put on the same scale of 0
(poorest) to 1(best) and summed to a Composite
Performance Index (CPl). Normalization was
involved by using min-max scaling of each of the
metrics of all the models. The increased CPI
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values are the signs of greater combined
performance in all dimensions. Federated Edge-
Al had the best composite index of 0.86, then
Edge-Al had 0.66 and Cloud-based Al had 0.25.
Such outcomes in figure 5 confirm that federated
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and edge computing systems are always more
effective than the traditional centralized systems
in all the critical operation parameters.

Normalized Overall Performance Index of Al Architectures

104
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Figure 5. Normalized Overall

Performance Index

The empirical findings confirm the hypothesis
that the distributed intelligence architecture is
superior to the centralized model in low-energy
environments of IoT in all operational
parameters.

Discussion

Comparative study of Cloud-based Al, Edge-Al
and Federated Edge-Al paradigm provides a set
of explicit and measurable trade-offs between
model performance, computational locality, and
communication efficiency. The findings obtained
by the modeled Internet of Things network
illustrate that there is a very close reliance on the
general system effectiveness on the position of
computation and learning relative to the source
of data. Although the cloud infrastructures offer
access to big data integration and processing
power, their centralized structure presents
energy and latency costs that become major
limitations to low-power loT settings. Mobility of
the intelligence to edge and federated nodes on
the other hand provides a more energy
conscious and latency conscious architecture
that is more compatible with the requirements

of pervasive smart devices and real-time
applications (Alahi et al., 2023).

The outcomes of energy use indicate the
inefficiency of the centralized architectures
when it comes to distributed sensing networks.
The inherent problem with the Cloud-based Al
model is that all loT nodes consume a great deal
more power, simply due to continuous emissions
of raw sensor data to remote servers. This
overall upstream communication is not only the
cause of heavier overheads during transmission,
but it also directly carries out smoking node
batteries, which is a direct attack on
sustainability and deployment life. The 52
percent of energy not used in the Edge-Al
architecture of a cloud shows that local
inference is successful in removing unnecessary
data transfer. The only thing it will necessitate is
the transfer of processed results or alerts sent
out because it does the data processing close to
the source which in turn will radically shrink the
energy footprint. The federated edge-ai model
was even more energy efficient because it nearly
used two times less energy in its consumption
compared to the cloud benchmark. This is an
improvement which means that there is minimal
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reliance on core resources and sharing of
learning updates, and not the raw data (Trigka
and Dritas, 2025). The outcome justifies the
claim that distributed and collaborative
intelligence is an important facilitator of low-
energy Al systems that can behave
independently on the restricted loT settings.
The additional advantage of decentralization of
intelligence is demonstrated in the latency.
Latency was the worst in the Cloud-based Al
system because devices and centralized data
centers had a delay of the end-to-end
communication. This is not practical in the case
of applications that need quick response, like
autonomous systems, industrial 1oT control, or
medical monitoring. The transition to Edge-Al
allowed cutting the latency by almost 73% which
confirmed that localized inference can
significantly improve system responsiveness.
Despite the relative small improvement in
latency with the Federated Edge-Al model
compared to pure edge processing, this is a
suitably acceptable trade-off given the periodic
synchronization of model updates across nodes
involved. The latency overhead caused by these
updates is insignificant relative to the
subsequent benefit of collaborative accuracy.
This minor trade-off would probably be
compensated in the real deployment by the
capability to sustain shared intelligence without
necessarily using high-bandwidth or consistent
central links.

Using patterns of bandwidth is another
testament to the better performance of the
decentralized processing. The Al architecture
based on the Cloud required the largest
bandwidth, which aligns with the vast amount of
sensor streams that were sent to centralised
servers. Similarly, Edge-Al and Federated Edge-
Al decreased this load by 55 and 66%
respectively. Such savings are immediately
converted into reduced network congestion and
enhanced scalability of large-scale loT
ecosystems. This  minimization of the
transmission of the data not only conserves the
energy in the communication, it also enhances
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the security and privacy of information as the
sensitive information is not relayed to a far
country, but is instead local to the machine or a
small federation. This reduction is vital to the
operations of edge deployments that can
operate in environments with limited bandwidth
(i.,e. rural monitoring stations, vehicular
networks, or wearable systems) or have a
fluctuating connection (i.e. intermittently
connected).

Regarding accuracy, the findings show that the
efficiency improvement in decentralized models
does not always imply a drop in prediction
quality. The Cloud-based Al model achieved the
best accuracy (96.94%), though it should be
mention that the Edge-Al and Federated Edge-Al
models achieved the level of 92.61% and 95.03,
respectively. The loss in accuracy at edges of
setups using the marginal models can be
explained by the smaller size of models and the
limited local data. The Federated approach
however reclaims much of this loss because
nodes can learn using distributed experiences in
the collaborative fashion, but raw data is not
shared. This demonstrates one of the key
benefits of federated learning, i.e. achieving
cloud-level intelligence with edge level efficiency
and privacy. The slight gap between the two
models in the accuracy (less than 5 percent)
proves that lightweight Al algorithms are no
longer immature and can make high-quality
inferences even when having resource
constraints. Besides, this consistency in
consistency also indicates that the system-level
optimization (energy, latency, bandwidth) can
be optimized without having a severe impact on
the Al accuracy.

The composite performance index (CPI) creates
a holistic image of the system performance in
relation to all the parameters that one would
consider as essential. Normalization of all
measures allows it to make comparisons of
individual strength of each architecture on a
single scale. The CPI of 0.25 of Cloud-based Al,
0.66 of Edge-Al, and 0.86 of Federated Edge-Al is
the obvious indicator of the superior balance of
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the federated model. The high composite score
of Federated Edge-Al is its ability to handle the
multidimensional challenges of  Al-loT
integration: energy efficiency, responsiveness,
communication load, and inference accuracy.
And this also says of a direction of architectural
evolution into intelligent systems: off as
monolithic, centralised systems, and to
distributed, cooperative and adaptable
ecosystems that are sensitive to the
heterogeneity and dynamism of loT spaces.
Another theoretical area of the results is edge
computing and federated learning. The two
paradigms aim at minimizing the distance
between the generation and esteem use of data
to the lowest degree in order to minimize the
overhead of the communication and maintain
the data locality. The identified trade-offs such
as marginally increased latency in the federated
model, marginally different accuracy, and
enhanced efficiency metrics could be explained
by the literature available at the time when it
could be emphasized that Al system design in the
real world has to balance between
computational and communication constraints
and not optimize a single measure. This is a
combination strategy that is necessary in the
creation of scalable and sustainable Al-based
loT.

Conclusion:

The paper examined the performance of Cloud-
based Al, Edge-Al and Federated Edge-Al
paradigms under a simulated low-energy loT
network environment. The findings have shown
that edge computing over cloud computing
causes significant changes in the energy
consumption and latency as well as relatively
minor error in inference. Only Federated Edge-Al
model showed balanced performance, and
nearly cloud-like accuracy with a substantial
savings in accident costs both in the energy and
communication costs. These findings indicate
that collaborative and distributed intelligence
systems will be the direction to be taken as far as
the future of smart city loT infrastructures are
concerned. As an open and scalable
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reconfigurable solution, Federated Edge-Al has
the potential to meet the growing computational
and ethical needs of the future internet-of-
things ecosystem and ensure the effective
functioning of the ecosystems along with the
protection of the data. Lastly, federated learning
and edge computing offers a promising way
towards autonomous and low-energy and
intelligent networks that can be used to enable
resilient smart city operations.
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