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The exponential growth of the Internet of Things (IoT) systems in smart cities has 
exacerbated the need of energy-saving, low-latency, and privacy-preserving 
Artificial Intelligence (AI) applications. In this study, the authors have investigated 
the performance of three AI deployment paradigms on a simulated low-energy 
IoT network Cloud-based AI, Edge-AI, and Federated Edge-AI. Four key 
performance measures were tested with the computation of the energy 
consumption, latency, bandwidth use, and inference accuracy using quantitative 
experimentation with fifty IoT nodes within equal computational conditions. The 
findings have proved that Cloud-based AI is the most accurate (96.9%), but it has 
high energy and latency overheads since data is processed in a central location. 
By comparison, Edge-AI consumes 52% less energy and latency with 73% less 
compared to localized computation efficiency. The Federated Edge-AI paradigm is 
the best balanced to provide a reduction of 66 percent in energy consumption and 
25 percent in bandwidth efficiency, at a small accuracy cost (95.0 percent) relative 
to the cloud. The other normalized Composite Performance Index merely proves 
the excellence of Federated Edge-AI (CPI = 0.86) when compared to Edge (0.66) 
and Cloud (0.25) architectures. The paper summarizes the fact that federated 
learning and edge computing is a sustainable, scalable, and privacy-preserving 
architecture of the next-generation smart city IoT ecosystems. Such hybrid teams 
are capable of supporting near-cloud intelligence and delivering much higher 
network resilience and resource efficiency and is a paradigm shift of decentralized 
AI systems. 
Keywords: Edge Computing; Internet of Things; Artificial Intelligence; Smart 
Cities; Distributed Systems 

 
Introduction: 
The high level of urbanization and digitalization 
has produced an overwhelming demand to 
attract smart infrastructure able to manage 
resources effectively and increase the quality of 
life and be sustainable (Goel and Vishnoi, 2022). 
The most trending paradigm of such change is 
smart cities, and the networks and technologies 
that have been utilized to deliver responsive and 
data-oriented city services are networked 
technologies, such as the Internet of Things (IoT), 
artificial intelligence, and better communication 
networks (Alahi et al., 2023). Smart traffic 
control, garbage, environmental, and energy 

distribution applications can be discussed as 
examples of applications that are based on 
interrelated IoT sensors that constantly gather 
data and send it to the analysis unit to make 
decisions (Bellini et al., 2022). Nevertheless, the 
large size and diversity of such IoT 
implementations present severe issues related 
to do with energy usage, latency, and 
information handling. Specifically, the resources 
available to most IoT nodes in smart cities are 
extremely constrained (i.e., limited battery life, 
low computing capabilities, and bandwidth 
limitations), and this restricts the scalability and 
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sustainability of traditional cloud-centric designs 
( Trigka and Dritsas, 2025). 
Conventionally, the data obtained by the IoT 
devices is sent to centralized cloud servers to be 
processed and inferred. Though cloud 
computing offers great computational resources 
and storage capabilities, it is associated with 
huge communication overhead, latency, and 
energy consumption (Al-Jumaili et al., 2023). 
Constant relay of raw sensor data consumes 
battery-operated devices, causes network 
congestion, and raises the question of privacy 
because of the centralized nature of handling 
sensitive data of the city (Kanellopoulos et al., 
2023). As a result, an increasing academic and 
industrial consensus is that the future 
generation of smart city architectures needs to 
take intelligence nearer to data-generation 
locations. This paradigm of distributed 
intelligence, also known as Edge Artificial 
Intelligence (Edge-AI), puts machine learning 
(ML) and AI directly into IoT devices or 
intermediate edge nodes and allows real-time 
analytics, decision-making, and eliminates 
reliance on cloud connectivity (Gill et al., 2025). 
Edge-AI is a combination of embedded systems, 
edge computing, and AI. It allows processing and 
interpretation of data at the end of the network, 
close to the source of data, rather than sending 
it to a remote server (Garcia-Perez et al., 2023). 
This architectural change has a very bright future 
in the smart city ecosystem: it is going to reduce 
latency, improve privacy, use less network 
bandwidth, and, most importantly, become 
more energy-efficient. In edge-based designs, 
transmission of raw data is substituted with 
either local inference or event transmission, 
meaning, which lowers the power consumption 
of the radio transmission process, which is 
commonly a significant portion of the overall 
energy budget of IoT devices (Xu et al., 2022).  
Moreover, the incorporation of AI into energy-
limited IoTs presents new technical issues. 
Machine learning models that are common are 
computationally and memory-intensive, and 
they can be inaccessible with low-power 

microcontrollers or sensors (Xu et al., 2025). 
Consequently, due to the low-energy IoT 
networks, the Edge-AI application must optimize 
the model and system architecture closely. Such 
methods as Tiny Machine Learning (TinyML), 
model compression, quantization, pruning, and 
knowledge distillation have become viable 
solutions to run AI models on narrow hardware 
and energy budgets. All of these approaches 
make small neural networks runnable with 
kilobytes of memory on microcontrollers, 
allowing tasks like anomaly detection or 
environmental pattern recognition, or classifying 
acoustic events directly at the device level 
(Lamirini et al., 2023). 
Although TinyML has made it possible to run 
intelligence on the device, scaling and continuity 
in learning are still concerns for smart city 
networks where devices distributed should be 
able to cooperate and learn together (Ahmed et 
al., 2024). In this regard, Federated Learning (FL) 
as a decentralized training model enabling 
multiple edge devices to jointly train shared 
models without sharing raw data, has been 
recognized as a viable solution. FL reduces the 
cost of communication through the sharing of 
model updates rather than raw data and 
maximizes privacy through localization of the 
data (Beltran et al.,2023). However, even naive 
networks of FL can still be energy-inefficient 
because of periodic communication rounds and 
unnecessary involvement of low-energy nodes. 
Hence, smart city applications require energy-
aware and hierarchical federated learning, which 
makes model updates be scheduled selectively 
by considering energy levels, the quality of links, 
and the significance of contributions (Dang et al., 
2024). 
Edge-AI systems do not only focus on the local 
computation of energy efficiency, but also on its 
optimization at the network level. Smart cities 
are typically constructed based on low-power 
wide-area network (LPWAN) systems, including 
LoRaWAN, NB-IoT, or Sigfox, which is able to 
facilitate long-range communication with only a 
small amount of power usage (Pooyandeh and 
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Sohn, 2021). Nevertheless, the transmission and 
reception occurrences dominate the energy 
usage in LPWANs, and the minimization of 
communication is a key design concern. The IoT 
systems need to consider event-based 
communication models, event-driven sampling, 
and context-based transmission policies so that 
data are only transmitted when meaningful or 
when anomalies have taken place in order to be 
operated at low energies. Together with Edge-AI 
processing, the methods can significantly 
decrease network load, and the information 
quality can be maintained (Rajab et al., 2023). 
System architecture is one more important 
dimension. Architectures that are effectively 
deployed using Edge-AI solutions use the three-
layer framework, with the device layer consisting 
of energy-constrained IoT nodes with TinyML 
inference models; the edge or aggregator layer, 
which executes intermediate process, fusion, 
and coordination functions of distributed 
learning processes, and the cloud layer, which 
executes heavy training, data archival, and 
global model maintenance (Zheng et al., 2025). 
These hierarchical designs enable localized 
intelligence and yet have centralized control, a 
tradeoff between the latency, energy usage, and 
model accuracy. Moreover, the adaptive task 
offloading mechanisms can make dynamically 
based decisions on whether a task will be 
implemented at a lower tier or in a higher tier, 
depending on the current states of energy, 
workload, and network (Letaief et al., 2021). 
The energy-conservative aspect of the smart city 
integration of AI and IoT has far-reaching 
implications on society and the environment in 
general. Smart city infrastructures are projected 
to maximize the use of energy in the city, 
decrease emissions, and increase the efficiency 
of civic services (Raj and Shetty, 2024). 
Nevertheless, ironically, the energy footprint of 
the IoT and AI systems themselves has become a 
sustainability issue. Edge-AI is one of the 
potential solutions to eliminate such a paradox 
through minimizing unnecessary data transfers, 
prolonging the existence of the device, and 

decreasing the carbon footprint of cloud 
processing (Philipo et al., 2025). Thus, it is not 
just a technical requirement but also an 
environmental one to optimize Edge-AI to work 
with low energy consumption and improve the 
sustainability of the world in terms of global 
sustainability goals. Although a lot has been 
achieved in terms of research, there are a 
number of gaps in the literature (Surianarayanan 
et al., 2023). Most of the current literature on 
Edge-AI emphasizes performance measures like 
accuracy of inference and latency, and does not 
carry out a detailed energy characterization as 
well as long-term sustainability considerations. 
In the same way, the majority of federated 
learning studies presuppose sufficient amounts 
of computation and energy, which do not take 
into account the limitations of microcontroller-
based IoT nodes that are widespread in smart 
cities (Bourechak et al., 2023). Moreover, 
communication-layer optimization and AI model 
optimization have yet to be integrated; there are 
very few frameworks that optimize the energy of 
computation and communication on a system 
level in a holistic manner. It is through this 
fragmentation that machine learning 
optimization, communication protocols, and 
energy management policies should be brought 
together as a consolidated cross-layer solution 
to be outlined in a shared design philosophy 
(Rajput and Yadav, 2025).  
This work discusses the design and 
implementation of Edge-AI solutions to low-
energy IoT-based smart cities. The essence of the 
task is to create an integrated architecture and 
approach that would coordinate the optimality 
of AI model implementation, inter-
communication, and device power consumption. 
The suggested framework highlights three 
mutually supporting strategies, namely: (1) using 
TinyML models to detect and compress local 
events and (2) using hierarchical and energy-
aware federated learning to scale model 
adaptation and (3) using adaptive 
communication and offloading policies to trade-
off accuracy and energy efficiency. These 
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mechanisms will also help show that there is an 
opportunity to substantially increase the life of 
IoT devices and networks and preserve the 
presence of intelligent functionality and decent 
performance. 
Background Studies/Literature Review: 
The high pace of development of edge 
computing has essentially changed the manner 
in which data are handled in the distributed IoT 
setup. The first model of IoT was mostly cloud-
based, with the application of raw data produced 
by sensors and sent to centralized servers where 
raw data was stored and analyzed (Hartmann et 
al., 2022). Although it allowed to perform 
sophisticated computation, this model added 
high network latency, high bandwidth 
consumption, and susceptibility to 
communication failures (Ji et al., 2023). These 
problems were reduced with the development 
of edge computing, where the computation was 
moved nearer to the source of data. Edges 
servers, which are deployed at gateways, base 
stations, or micro-data centers, in the context of 
smart cities, conduct pre-processing and feature 
extraction and localized inference, which 
decreases the reliance on cloud infrastructures 
(Xu et al., 2023). 
Based on this paradigm, Edge-AI includes 
artificial intelligence features into the edge layer 
to aid autonomous decision-making. The 
architectures of edge-AI are based on the 
distributed intelligence in device, edge, and 
cloud levels in order to address the strict 
demands of latency, energy consumption, and 
the privacy (Duan et al., 2022). The architectures 
are specifically applicable to smart cities, where 
timeliness is essential to the applications of 
traffic light optimization, detecting 
environmental anomalies, and emergency 
responses. According to recent research, AI 
inference on edges has the potential to reduce 
the response time by up to 70% against cloud-
based analytics and also reduce communication 
energy by over 60% in the typical IoT 
deployment (Xu et al., 2023). However, AI 
models cannot be easily integrated into edge 

nodes and IoT nodes because of limited 
computing resources, memory, and energy 
resources. The latter has prompted a dedicated 
research area called Tiny Machine Learning 
(TinyML), the objective of which is to create 
microcontrollers- and battery-powered devices-
compatible ultra-lightweight machine-learning 
models (Hua et al., 2023). 
One of the most promising technologies that can 
be employed to possess intelligent behavior at 
the extreme end of the IoT networks is tinyML. 
The concept is to scale the ML models, in this 
case neural networks, to be executed on a few 
hundred kilobytes of memory and milliwatts of 
power. Several methods that are widely utilized 
in order to achieve these objectives are pruning 
models, quantization, knowledge distillation, 
and architecture search (Liu et al., 2024). More 
recent frameworks like Tensor Flow Lite Micro, 
Edge Impulse and microTVM allow a developer 
to execute AI inference on a microcontroller with 
no external dependencies. One can mention the 
example of a 20-kilobyted convolutional neural 
network presented by Liu et al. (2024) and 
capable of recognizing keywords with less than 1 
mW of power draw on an ARM Cortex-M4 chip. 
Similarly, Wong et al. (2024) proposed the 
adoption of quantization-aware training, the 
weight clustering, and they used it to implement 
the environmental anomaly detectors in the 
LoRa-enabled nodes, which consumed more 
than 75% of the energy in the case of continuous 
data streaming. 
TinyML has started to pay attention to energy-
adjustable behavior, where models can become 
more or less complex based on some element of 
the accessible energy or the urgency of the task 
(Swamy, 2024). Partial termination of inference 
at the occurrence of intermediate confidence 
thresholds can be performed using early-exit 
networks, and with a less computational cost at 
tolerable accuracy. These types of designs are 
perfectly in line with the sustainability goals of 
the smart city IoT systems, where the lifespan of 
sensors directly affects the cost and 
maintenance periods of operations (Belli et al., 
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2020). In addition to these developments, the 
majority of TinyML deployments are static, and 
are not capable of learning or adapting post 
deployment. This is a limitation to scalability in 
dynamic settings e.g. urban traffic systems or air-
quality monitoring where contextual patterns 
change with time (Schizas et al., 2022). 
Therefore, researchers have resorted to 
federated learning and collaborative inference 
mechanisms to allow continuous learning over 
distributed resource-constrained devices. 
Federated Learning (FL) enables two or more 
devices to jointly train a common model without 
the need to transmit raw data to the central 
server (Abreha et al., 2022). The nodes make 
local model updates using their own private 
dataset, and communicates them to an 
aggregator when such updates, typically 
gradients or changes in weights, are available to 
the aggregator to gather global model updates. 
This method maintains the data privacy and in 
comparison to centralized learning, this method 
consumes a lot less information than the 
centralized one (Yang et al., 2022). FL is 
especially useful in the intelligent city domain in 
areas that require sensitive or distributed based 
data like in health care monitoring, mobility 
analytics, or video monitoring. However, 
traditional FL algorithms are comparatively 
strong members and unchangeable connectivity, 
which is quite unlikely to be achieved by IoT 
gadgets with low energy needs. Unbalanced 
distribution of data, convergence instability, and 
heterogeneous power usage are some of the 
issues that cause premature depletion of the 
devices (Khan et al., 2025). 
The literature suggests a number of energy-
conscious FL approaches to solve these 
problems. Qin et al. (2024) propose a new 
selection of participants, called adaptive, in 
terms of residual battery energy, quality of links, 
and significance of contributions, which allows 
extending network life without limiting learning 
performance. Additional works investigate 
update compression (e.g., sparse or quantized 
gradients), asynchronous aggregation, and 

hierarchical federated learning (HFL) structures, 
in which the middle edge nodes do local model 
fusion, followed by synchronization with the 
cloud (Anagnostopoulos et al., 2024). This type 
of hierarchical models is especially applicable to 
deployments at city-scale to facilitate learning at 
cluster level and minimize long-haul 
transmissions. Apart from these developments, 
there are still two basic gaps. First, the vast 
majority of FL implementations do not optimize 
computation and communication energy jointly 
and only reduce the update frequency. Second, 
there is not much integration between TinyML 
inference at the end devices and model 
adaptation at higher levels through FL (Shahid et 
al., 2021). The opportunity to bridge these gaps 
by combining cross-layer optimization is also a 
major area of research that the present study 
endeavors to fill. 
The energy use of the IoT networks is based on 
the communication protocols or hardware 
design. Many studies have shown that the use of 
radio transmission and reception is often the 
largest contributor to overall energy use and up 
to 60-80% of a node lifetime consumption (Fay 
et al., 2023). Therefore, Edge-AI deployments 
cannot do without energy-efficient networking 
plans. LoRaWAN, NB-IoT, and Sigfox are Low-
Power Wide-Area Networks (LPWANs) which 
have become widely used in smart cities since 
they have a long range and low power profile. 
Nevertheless, LPWANs have disadvantages of 
low data rates and tough duty-cycle controls. In 
the study by Fay et al. (2023), the energy model 
of LoRaWAN devices was presented in a detailed 
manner, demonstrating that message 
retransmissions and large payloads significantly 
decrease the battery life. They can thus increase 
energy efficiency by reducing communication 
events either with the use of local inference or 
adaptive sampling or with the use of compressed 
model updates-principles of Edge-AI. 
Further development of research incorporates 
adaptive control of communication whereby 
transmission parameters (spreading factor, 
power level or interval) are dynamically changed 
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subject to network conditions or model-
inference confidence. Indicatively, Ahmed et al. 
(2025) suggested an AI-guided medium-access 
control protocol, which learns to have the best 
timing of transmission to compromise between 
energy and latency. All these innovations point 
to the fact that it is the synergy between AI and 
layers of communication, and not individual 
optimization that is the key to sustainable 
operation of the IoT. A number of architectural 
frameworks are proposed to integrate a variety 
of technologies that drive smart cities. The most 
common one is the multi-tier architecture that 
separates the computation and intelligence 
between the device, the edge, and the cloud 
layers (Du et al., 2022). On the device level, 
TinyML models can be used to process 
preliminary data information and event 
detection, the edge level process aggregation, 
local training, and coordination, and the cloud 
level carries out complex analytics and global 
coordination. These are architectures that are 
scalable, responsive and energy-efficient. 
Recent applications focus on the offloading of 
tasks policy, which states that computational 
tasks are offloaded dynamically through the 
different levels based on energy state, 
availability of bandwidth, and latency factors. 
For example, Yang et al. (2022) suggested an 
energy-conscious task-offloading strategy to 
vehicular IoT networks, which improved the 
device lifetime by 40 per cent by means of 
adaptive edge selection. In the same manner, 
Shen et al. (2025) came up with a reinforcement-
learning-based offloading strategy which 
optimizes energy and accuracy together through 
predicting real-time changes in workload. 
However, the implementation of such structures 
in the real-life smart cities is not a trivial one. 
Heterogeneity of devices, security 
vulnerabilities, and complexity of scaling of 
large-scale Edge-AI networks are some of the 
challenges (Gill et al., 2025). Moreover, there are 
not many studies that can give standardized 
benchmarks or holistic energy models that 
include AI inference and network 

communication. The literature thus proposes 
the need of experimental and simulation based 
approaches that can measure end-to-end energy 
performance in heterogeneous smart city 
setups.The literature reviewed confirms that 
Edge-AI, TinyML, and federated learning have 
made a considerable step toward intelligence 
decentralization and reduced latency in IoT 
systems in Smart cities. However, a number of 
gaps in the research still exist: 
Fragmented Optimization: The current literature 
considers optimization of AI models and network 
energy management as two separate issues 
instead of combining them in a unified 
framework. 
Limited Adaptivity: Not many architectures 
combine real time energy sensing with adaptive 
model selection, communication schedule or 
offloading. 
Absence of Empirical Characterisation of Energy: 
There is little quantitative characterisation of the 
total system energy; i.e. sensing, computation 
and communication, so it is hard to assess the 
real sustainability benefits. 
Scalability Issues: Hierarchical learning and 
management systems with the capability of 
running on thousands of heterogeneous devices 
are not well studied. 
Lack of Standardized Evaluation Metrics: In most 
studies, the benchmarks used are isolated; there 
is still no single metric of measuring energy 
efficiency, latency, and inference accuracy. 
To address these constraints, there is a need to 
consider the cross-layer and energy-aware Edge-
AI architecture, where TinyML inference, 
federated learning, and adaptive 
communications are balanced to be built in one 
design framework. The system should provide 
balance between intelligence, scalability and 
sustainability to response to the operation and 
environmental requirement of smart cities in 
future. 
Research Design: 
The study has a mixed-method research design 
that integrates analysis modeling and simulation 
experimentation to investigate how Edge-AI 
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architectures can be utilized to enhance energy 
efficiency in IoT networks in smart cities. The 
paradigm the study is grounded in is a design-
science, which is aimed at the design, 
deployment, and testing of a new Edge-AI 
architecture on energy consumption and 
computation. The involved steps include 
conceptualizing an edge-based architecture 
which has artificial intelligence added to the 
network periphery. This is now followed by 
lightweight AI algorithms and energy efficient 
communication protocols. The last step is the 
empirical testing and validation of the 
performance by the use of simulation, where it 
should be ensured that the framework is capable 
of functioning under the realistic conditions in 
the smart city. 
Proposed Framework 
The suggested Edge-AI system is designed as a 
three-level distributed architecture, which 
includes the IoT device layer, the edge 
intelligence layer, and the cloud coordination 
layer. All layers have their unique but inter-
dependent tasks in the system in the 
management of energy, computation, and 
communication. 
The IoT device layer includes low powered 
sensors, actuators and microcontrollers 
interwoven in the urban infrastructures like 
traffic lights, environmental stations, and police 
surveillance units. These devices produce huge 
volumes of environmental, transportation, and 
utility data, which is processed locally to a small 
degree because of energy limitations and 
computing limitations. The IoT devices perform 
simple processes like data sampling, 
compression, and preliminary features 
extraction instead of sending raw data 
continuously to the cloud and thus save on 
bandwidth and energy. The layer of edge 
intelligence is the computation layer between 
the IoT nodes and the cloud. It is comprised of 
edge servers or gateways that have adequate 
processing power to run machine learning 
models on a real time basis. The edge layer is 
where localized inference and data aggregation 

are done, and tailored decisions are made, so 
that the system can react quickly to contextual 
environments, i.e. traffic congestion or air 
quality alerts. Edge nodes use lightweight neural 
networks, reinforcement learning agents or 
federated learning schemes to make sure that 
they make decisions near the source of the data 
to minimise latency and communication 
expenses. 
The cloud coordination layer offers the world 
wide supervision and long term intelligence. It 
scales and consolidates metadata and 
periodically retrains AI models based on large-
scale data gathered spanning across multiple 
edge domains. New model parameters are then 
re-distributed to edge nodes in a federated 
learning cycle to keep local models moving 
towards a steady improvement with no need of 
raw data transfer. This hierarchical model is a 
successful distribution of computational loads 
and coherence between the global and local 
intelligence, leading to a higher scalability of the 
smart city ecosystem and energy sustainability. 
Simulation setup and data collection  
Data collection will be performed using existing 
figures (those in real life). The study applies an 
approach based on the use of simulation with 
the help of a smart city prototype environment 
which supports the real-world dynamics of IoT 
communication, computation and power 
consumption. The network modeling 
component of the simulation is modeled on 
Network Simulator 3 (NS-3) and the AI inference 
models are implemented with the help of 
TensorFlow Lite on the edge. The synthetic data 
is created in a virtual smart city grid that has a 
geographic area of about four square kilometers. 
This grid has 500- 2000 IoT devices randomly 
attached to it with each device programmed to 
pump streaming flows of environmental and 
activity data always. These sensors simulate 
numerous kinds of data and constitute a variety 
of environmental pointers, including 
temperature, humidity, and particulate matter, 
and transport pointers, including vehicle density 
and movement patterns. In addition, the IoT 
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cameras simulate their nodes to detect events 
when there is a public safety scenario. 
The communication technology follows the low-
power wireless communications such as IEEE 
802.15.4 and LoRaWAN, which resembles a real-
life application of smart cities. The functionality 
of all IoT devices is limited by a tiny battery 
capacity, and the model of energy consumption 
is approximated by the realistic measures of 
power discharge to offer an evaluation of the 
feasibility of the proposed system. Permanent 
edge servers are installed all across the network, 
which serve as local network aggregates and AI 
computing devices. Different densities and 
workloads of the network are used to run the 
simulation to check the scalability and flexibility 
of the framework. Major parameters that are 
adjusted systematically are the frequency of 
data transmission, the mobility of nodes, and the 
range of communication to ensure that the 
system is tested under different conditions in the 
urban environment. 
AI Model Implementation 
One of the main themes of this study is the 
implementation of energy-efficient AI models 
capable of executing on edge nodes (resource-
constrained). To realize the same, the models 
are rigorously optimized by pruning models, 
quantizing models, and knowledge distillation. 
Based on these processes, the number of 
trainable parameters, the size of memory and 
the inference latency are significantly reduced 
without compromising predictive accuracy. The 
first models of AI are mostly grounded on 
Convolutional Neural Networks (CNNs) to 
identify patterns and Decision Tree classifiers to 
make lightweight predictions of events. The 
training is initiated on the cloud where large 
aggregated datasets are used after which 
optimized models are sent out to edge nodes. 
Federated learning is used to maintain privacy 
and minimize the overhead in communication: 
the edge nodes update their local model weights 
on the local data and only send the learned 
weights to the cloud. The cloud subsequently 
carries out a federated averaging to create a 

global model which is re-distributed to the 
edges. Such a process will result in constant 
learning as well as in preventing the need of 
centralizing sensitive information. 
Similarly, the structure has adaptive sampling 
mechanisms that dynamically change the 
sensing rates in response to environmental 
variability. Using air quality measurements as an 
example, there are no changes in air quality over 
some period of time, the system will 
automatically reduce sampling rate to conserve 
energy. These adaptive algorithms of 
reinforcement learning policy offer the IoT 
nodes control energy consumption on their own, 
along with information integrity. 
Performance Metrics 
To assess the efficacy of the proposed 
framework, the analysis will be done by a set of 
quantitative measures of analysis in terms of 
energy consumption, latency, accuracy, 
bandwidth consumption, and computational 
overhead. Energy use is measured in millijoules 
per inference cycle or data transmission cycle 
and this directly provides a clue on the efficiency 
of the system. The duration of time to happen in 
data generation at the sensor and actionable 
output at the edge or cloud layer, can be defined 
as latency, which is an indicator of 
responsiveness in the system as operations 
proceed in real-time. 
The percentage of the correct predictions of the 
AI models that can be compared to assess the 
centralized and distributed approaches is the 
inference accuracy. The bandwidth used is an 
indicator of all the data traffic within the 
network since this represents a reduction in the 
load on the communication due to the edge 
processing. Finally, the cost of updating the edge 
models with the cloud at federal learning period 
is known as model update overhead. By 
integrating these measures, the research article 
creates an extensive picture of performance, 
comprising of operational efficiency and 
computational intelligence. The statistical 
averaging of the various simulation runs is 
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adopted to provide strong results and not an 
outlier effect. 
Comparative Analysis and Experimental Design 
The experimental process is designed in a way 
that allows making comparative assessment of 
three different set-ups traditional cloud-based 
AI, pure edge-based AI, and hybrid federated 
learning set-up. The typical centralized paradigm 
in the baseline experiment is a situation where 
all the IoT data is forwarded to the cloud to be 
processed. This case offers a point of reference 
to measure energy expenditure, latency as well 
as accuracy of inferences. The second system 
employs AI models at the edge nodes allowing a 
localized processing of data and the making of 
decisions. The purpose of this setting is to show 
the advantages of edge intelligence in reducing 
the cost of communication and ensuring real-
time responsiveness. The third and last setup is 
the federated learning one, where the local 
models are trained by the edge devices and the 
global aggregation of parameter updates is done 
with the cloud. The controlled variations in the 
node density, data traffic, and network load are 
carried out in each experimental condition. The 
results are statistically tested to reveal whether 
the difference between the performance when 
using the three configurations is significant. 
 

Results 
A quantitative outcome of the simulation 
experiments conducted depicting three AI 
deployment paradigms of Cloud-based AI, Edge-
AI, and Federated Edge-AI in a simulated low-
energy IoT network environment is presented. 
These models were evaluated based on four 
primary performance metrics namely energy 
consumption, latency, bandwidth used and 
inference accuracy. The experiments were 
conducted in the same environmental and 
computing conditions in order to be compared 
and reproduced fairly. 
Overall Performance Summary 
The performance study was done at fifty IoT 
nodes that were evenly spaced in a simulated 
smart city topology. The nodes were simulated 
to reflect the real-life device properties such as 
limited energy sources, intermittent connectivity 
and constant sensing. The general behavior of 
each deployment architecture was represented 
by the average values of the repeated simulation 
trials, and the small difference between the runs 
ensured the stability and reproducibility of the 
results of the experiment. Table 1 summarizes 
results about the mean results of all the four key 
performance metrics in the three scenarios of AI 
deployment. 

Table 1. 
Comparative Performance Metrics for Cloud, Edge, and Federated Edge AI Architectures 

Scenario Avg Energy 
Consumption (mJ) 

Avg 
Latency 

(ms) 

Avg Bandwidth 
Usage (kB/s) 

Avg 
Inference 

Accuracy (%) 

Cloud-Based AI 14.73 453.36 250.97 96.94 

Edge-AI 
Architecture 

7.02 122.26 112.72 92.61 

Federated Edge-AI 4.97 159.58 84.42 95.03 

The quantitative summary shows that there is a 
marked performance difference between the 
three paradigms. The Cloud-based AI model was 
the most energy consuming and had the largest 
latency, indicating that it requires remote 

centralized computation. The Edge-AI model, 
however, experienced significant decreases in 
both measures, which depict the usefulness of 
localized processing. Lastly, Federated Edge-AI 
system reached the greatest compromise 
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between the almost near-cloud inference 
accuracy and the low energy and bandwidth 
consumption.  
Energy Consumption 
The energy consumption recorded in all 
architectures indicates a strong enhancement 
with the shift of the computation on the cloud to 
the network edge. In Cloud-based AI architect, 
the average energy consumption of each IoT 
node was 14.73 mJ per operation cycle as seen 
in figure 1, which indicates a high overhead due 
to the constant transmission of the raw sensor 
data to the remote servers. The consumption in 

the Edge-AI set up dropped to 7.02 mJ, which is 
52% lower than the consumption in the cloud 
case. Federated Edge-AI model recorded the 
lowest energy consumption of 4.97 mJ which is 
by 66 % lower compared to the cloud baseline. 
The average standard deviation among all the 
nodes was less than 0.3 mJ making sure that the 
results were stable within the simulated 
environment. The figure also must represent a 
comparative side by side bar or column chart of 
the three levels of energy to help visually stress 
the progressive decrease between the cloud to 
the federated architectures. 

 
Figure 1. Energy Consumption in IoT Networks 

 
Resource-constrained environments are highly 
dependent on energy consumption to ascertain 
the sustainability of the IoT network. The 
findings make it apparent that the proximity of 
computational intelligence to the network edge 
significantly decreases the power load of the IoT 
devices. 
Latency 
Latency is a direct factor affecting the 
responsiveness of IoT networks and one of the 
key factors that determine user experience and 

the ability to make a decision in real-time. 
Simulations yielded a significant decrease in 
latency with the type of processing intelligence 
being brought near data source. The AI setup 
based on the Cloud had the largest mean latency 
of 453.36 ms(shown in figure 2) as it represents 
a significant delay due to long-distance 
communication and centralized queueing of 
tasks. This kind of delay is not usually tolerated 
in time-sensitive applications of smart cities 
system, including emergency response or 
autonomous traffic control. 
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Figure 2. Latency Comparison 

Comparatively, the Edge-AI model reduced to a 
stunning 122.26 ms, which is 73% shorter, with 
respect to response time. The importance of this 
decrease is the ability to process data instantly 
without a wide-area data transmission. 
Interestingly, in the Federated Edge-AI 
architecture, a latency of 159.58 ms was slightly 
higher as compared to the standalone edge 
approach. This small increment is attributed to 
periodic synchronization overheads and model 
update exchanges, which are associated with 
federated learning. Nevertheless, latency was 
still more than two times better than the cloud 
implementation, which corroborates the fact 
that distributed intelligence is able to provide 
significant responsiveness benefits even in 
federated coordination. 

Bandwidth Utilization 
Scalable IoT systems require bandwidth 
efficiency when they run on constrained or 
constrained network infrastructures. The results 
in figure 3 show that there is a steady declining 
tendency of bandwidth consumption as the 
intelligence shifted to the network edge. Cloud-
based AI model recorded the largest 
communication overhead, and it was recorded 
that each node had an average of 250.97 kB/s of 
constant data transmission. This load can be 
seen as the constant uploading of uncoded 
sensor data to cloud data centres to perform 
centralised inferences. 

 

 
Figure 3. Bandwidth Utilization 
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Edge-AI on the other hand dropped the 
communication load considerably to 112.72 
kB/s, yielding about 55 percent bandwidth 
consumption decrease. This is improved through 
processing the information on-the-fly and 
sending back merely inferences or summaries of 
decisions. The Federated Edge-AI setup had the 
lowest bandwidth needs of 84.42 kB/s which is 
25% lower than standalone Edge-AI. Although 
communication between federated models was 
intermittent because of the model updates, the 
amount of data transferred was small since the 
federated models exchanged compressed model 
gradients rather than complete datasets. The 
simulated network exhibited consistent 

behavior in communication efficiency as the 
bandwidth difference between all of the nodes 
was found to be less than 5%. 
Inference Accuracy 
The accuracy of inference is the predictive 
reliability of AI models in distributed systems. 
The findings in figure 4 show that a higher energy 
and bandwidth efficiency did not significantly 
reduce the predictive performance. The Cloud-
based AI model scored the best 96.94 
consistency with the availability of centralized 
and complete data aggregation and high 
complexity models. 

 

 
Figure 4. Inference Accuracy 

An average accuracy of 92.61 was 
measured by the Edge-AI setup, which is 4.3 
percent lower than that of the cloud. This minor 
change was anticipated because smaller model 
architectures were to be used in low-resource 
devices. However, the precision was acceptable 
in most of the applications of smart cities like 
predicting traffic flow or pollution. Surprisingly, 
Federated Edge-AI model reclaimed a significant 
proportion of the lost accuracy with a 95.03 
result that is a good balance between efficiency 
and model accuracy. The distributed training of 
the multi-edge nodes enabled the world model 
to maintain representational richness without 

experiencing the communication and privacy 
costs of centralizing to the cloud. The standard 
deviation of the results of all the tests conducted 
was less than 1 percent which validated that the 
accuracy results had high reproducibility and 
reliability. 
Index of Performance  
In order to provide a consistent overall system 
performance comparison, all four performance 
measures were put on the same scale of 0 
(poorest) to 1(best) and summed to a Composite 
Performance Index (CPI). Normalization was 
involved by using min-max scaling of each of the 
metrics of all the models. The increased CPI 
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values are the signs of greater combined 
performance in all dimensions. Federated Edge-
AI had the best composite index of 0.86, then 
Edge-AI had 0.66 and Cloud-based AI had 0.25. 
Such outcomes in figure 5 confirm that federated 

and edge computing systems are always more 
effective than the traditional centralized systems 
in all the critical operation parameters. 

 

 
Figure 5. Normalized Overall 

Performance Index 

The empirical findings confirm the hypothesis 
that the distributed intelligence architecture is 
superior to the centralized model in low-energy 
environments of IoT in all operational 
parameters. 
Discussion 
Comparative study of Cloud-based AI, Edge-AI 
and Federated Edge-AI paradigm provides a set 
of explicit and measurable trade-offs between 
model performance, computational locality, and 
communication efficiency. The findings obtained 
by the modeled Internet of Things network 
illustrate that there is a very close reliance on the 
general system effectiveness on the position of 
computation and learning relative to the source 
of data. Although the cloud infrastructures offer 
access to big data integration and processing 
power, their centralized structure presents 
energy and latency costs that become major 
limitations to low-power IoT settings. Mobility of 
the intelligence to edge and federated nodes on 
the other hand provides a more energy 
conscious and latency conscious architecture 
that is more compatible with the requirements 

of pervasive smart devices and real-time 
applications (Alahi et al., 2023). 
The outcomes of energy use indicate the 
inefficiency of the centralized architectures 
when it comes to distributed sensing networks. 
The inherent problem with the Cloud-based AI 
model is that all IoT nodes consume a great deal 
more power, simply due to continuous emissions 
of raw sensor data to remote servers. This 
overall upstream communication is not only the 
cause of heavier overheads during transmission, 
but it also directly carries out smoking node 
batteries, which is a direct attack on 
sustainability and deployment life. The 52 
percent of energy not used in the Edge-AI 
architecture of a cloud shows that local 
inference is successful in removing unnecessary 
data transfer. The only thing it will necessitate is 
the transfer of processed results or alerts sent 
out because it does the data processing close to 
the source which in turn will radically shrink the 
energy footprint. The federated edge-ai model 
was even more energy efficient because it nearly 
used two times less energy in its consumption 
compared to the cloud benchmark. This is an 
improvement which means that there is minimal 
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reliance on core resources and sharing of 
learning updates, and not the raw data (Trigka 
and Dritas, 2025). The outcome justifies the 
claim that distributed and collaborative 
intelligence is an important facilitator of low-
energy AI systems that can behave 
independently on the restricted IoT settings. 
The additional advantage of decentralization of 
intelligence is demonstrated in the latency. 
Latency was the worst in the Cloud-based AI 
system because devices and centralized data 
centers had a delay of the end-to-end 
communication. This is not practical in the case 
of applications that need quick response, like 
autonomous systems, industrial IoT control, or 
medical monitoring. The transition to Edge-AI 
allowed cutting the latency by almost 73% which 
confirmed that localized inference can 
significantly improve system responsiveness. 
Despite the relative small improvement in 
latency with the Federated Edge-AI model 
compared to pure edge processing, this is a 
suitably acceptable trade-off given the periodic 
synchronization of model updates across nodes 
involved. The latency overhead caused by these 
updates is insignificant relative to the 
subsequent benefit of collaborative accuracy. 
This minor trade-off would probably be 
compensated in the real deployment by the 
capability to sustain shared intelligence without 
necessarily using high-bandwidth or consistent 
central links. 
Using patterns of bandwidth is another 
testament to the better performance of the 
decentralized processing. The AI architecture 
based on the Cloud required the largest 
bandwidth, which aligns with the vast amount of 
sensor streams that were sent to centralised 
servers. Similarly, Edge-AI and Federated Edge-
AI decreased this load by 55 and 66% 
respectively. Such savings are immediately 
converted into reduced network congestion and 
enhanced scalability of large-scale IoT 
ecosystems. This minimization of the 
transmission of the data not only conserves the 
energy in the communication, it also enhances 

the security and privacy of information as the 
sensitive information is not relayed to a far 
country, but is instead local to the machine or a 
small federation. This reduction is vital to the 
operations of edge deployments that can 
operate in environments with limited bandwidth 
(i.e. rural monitoring stations, vehicular 
networks, or wearable systems) or have a 
fluctuating connection (i.e. intermittently 
connected). 
Regarding accuracy, the findings show that the 
efficiency improvement in decentralized models 
does not always imply a drop in prediction 
quality. The Cloud-based AI model achieved the 
best accuracy (96.94%), though it should be 
mention that the Edge-AI and Federated Edge-AI 
models achieved the level of 92.61% and 95.03, 
respectively. The loss in accuracy at edges of 
setups using the marginal models can be 
explained by the smaller size of models and the 
limited local data. The Federated approach 
however reclaims much of this loss because 
nodes can learn using distributed experiences in 
the collaborative fashion, but raw data is not 
shared. This demonstrates one of the key 
benefits of federated learning, i.e. achieving 
cloud-level intelligence with edge level efficiency 
and privacy. The slight gap between the two 
models in the accuracy (less than 5 percent) 
proves that lightweight AI algorithms are no 
longer immature and can make high-quality 
inferences even when having resource 
constraints. Besides, this consistency in 
consistency also indicates that the system-level 
optimization (energy, latency, bandwidth) can 
be optimized without having a severe impact on 
the AI accuracy. 
The composite performance index (CPI) creates 
a holistic image of the system performance in 
relation to all the parameters that one would 
consider as essential. Normalization of all 
measures allows it to make comparisons of 
individual strength of each architecture on a 
single scale. The CPI of 0.25 of Cloud-based AI, 
0.66 of Edge-AI, and 0.86 of Federated Edge-AI is 
the obvious indicator of the superior balance of 
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the federated model. The high composite score 
of Federated Edge-AI is its ability to handle the 
multidimensional challenges of AI-IoT 
integration: energy efficiency, responsiveness, 
communication load, and inference accuracy. 
And this also says of a direction of architectural 
evolution into intelligent systems: off as 
monolithic, centralised systems, and to 
distributed, cooperative and adaptable 
ecosystems that are sensitive to the 
heterogeneity and dynamism of IoT spaces. 
Another theoretical area of the results is edge 
computing and federated learning. The two 
paradigms aim at minimizing the distance 
between the generation and esteem use of data 
to the lowest degree in order to minimize the 
overhead of the communication and maintain 
the data locality. The identified trade-offs such 
as marginally increased latency in the federated 
model, marginally different accuracy, and 
enhanced efficiency metrics could be explained 
by the literature available at the time when it 
could be emphasized that AI system design in the 
real world has to balance between 
computational and communication constraints 
and not optimize a single measure. This is a 
combination strategy that is necessary in the 
creation of scalable and sustainable AI-based 
IoT. 
Conclusion: 
The paper examined the performance of Cloud-
based AI, Edge-AI and Federated Edge-AI 
paradigms under a simulated low-energy IoT 
network environment. The findings have shown 
that edge computing over cloud computing 
causes significant changes in the energy 
consumption and latency as well as relatively 
minor error in inference. Only Federated Edge-AI 
model showed balanced performance, and 
nearly cloud-like accuracy with a substantial 
savings in accident costs both in the energy and 
communication costs. These findings indicate 
that collaborative and distributed intelligence 
systems will be the direction to be taken as far as 
the future of smart city IoT infrastructures are 
concerned. As an open and scalable 

reconfigurable solution, Federated Edge-AI has 
the potential to meet the growing computational 
and ethical needs of the future internet-of-
things ecosystem and ensure the effective 
functioning of the ecosystems along with the 
protection of the data. Lastly, federated learning 
and edge computing offers a promising way 
towards autonomous and low-energy and 
intelligent networks that can be used to enable 
resilient smart city operations. 
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