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Abstract:

This study examines the relationship between Social Responsibility, Knowledge
Management, and sustainable development in Hayel Saeed Ana'am Group in
Yemen. The research aims to explore how social responsibility influences
knowledge management processes and contributes to achieving the Sustainable
Development Goals. Data were collected using a structured questionnaire
administered to 191 participants, and the instrument's reliability and validity
were confirmed. The data were analyzed using SPSS 28 and SmartPLS 4.0.5.9.
The results reveal that Social Responsibility significantly influences both
Knowledge Management and Sustainable Development. Furthermore,
Knowledge Management acts as a mediator between Social Responsibility and
Sustainable Development. The findings underscore the importance of integrating
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interconnectedness of these dimensions, providing valuable insights for
organizations seeking to improve their sustainability practices through
responsible management and knowledge processes.

Keywords: Social Responsibility; Knowledge Management; Sustainable
Development.

Introduction used in the medical domain have high

loT-based Systems (loTS) have emerged as a
fundamental component for  essential
infrastructure across multiple sectors, such as
industrial  control  systems, healthcare,
transportation, and intelligent grid networks.
These systems amalgamate physical processes
with computational and communication
assets, facilitating real-time  oversight,
regulation, and enhancement (Mohammed et
al., 2024). The intrinsic interconnection of loTs
makes them more prone to all sorts of cyber
threats, including false data injection attacks,
denial-of-service attacks, and jamming attacks,
which can compromise their security,
reliability, and operational performance (Dai
et al., 2024; Balogun et al., 2024).

For instance, medical cyber-physical systems

vulnerability to cyber attacks, which could steal
sensitive patient information or interrupt
critical life-sustaining services (Mohammed et
al., 2024; Balogun et al., 2024). Equally, the
smart grid infrastructures are exposed to a
connected series of cyber attacks that are able
to compromise the grid operations and cause
mass-scale power failures (Farraj et al., 2024).
The critical role CPS play in society underlines
the necessity for their security and resilience
in view of emerging threats.

Traditional security mechanisms often don't
bring out the complexity and dynamic nature of
CPS, which needs innovative approaches. In
this context, emerging technologies in
blockchain, deep learning, and game theory
hold very promising solutions for CPS security.
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The decentralized and immutable blockchain
structure provides a guarantee for data
integrity, setting up a robust foundation for
secure communications (Dai et al., 2024;
Mohammed et al.,, 2024). Deep learning
techniques enable real-time  anomaly
detection through complex patterns in system
behavior (Selim et al., 2024; Costa et al., 2024).
Besides, the game theory brings in strategic
insights in adversarial interactions to improve
the defense against advanced attackers (Ge et
al., 2024; Wang et al., 2024).

Several studies have proposed new methods
to face the security issues in CPS. Mohammed
et al. (2024) pointed out that the integration of
deep learning and blockchain may be an
effective method to secure healthcare data in
industrial CPS. Dai et al. (2024) reported a
blockchain framework to improve cyber-
resilience against FDI attacks of microgrid
distributed control systems. Similarly, Balogun
et al. (2024) proposed a deep learning
approach embedded with blockchain to
enhance the security of next-generation
medical loTs.

The area of CPS security has had wide
applications of game theory. Zhang et al.
(2024) analyzed a game-theoretic approach for
enhancing constraint-following control in CPS
under cyber threats. Farraj et al. (2024)
analyzed an attack-mitigation strategy of
switching attacks in smart grid systems by a
game-theoretical model. Moreover, Wang et
al. (2024) presented the application of a
Stackelberg game-theoretical model for
optimal attack strategy for CPS.

Deep learning, especially in the realm of deep
reinforcement learning, has surfaced as an
effective instrument for adaptive control and
the mitigation of cyber threats. Selim et al.
(2024) conducted an exploration of deep
reinforcement learning aimed at protecting
distribution systems from cyber attacks. Costa
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et al. (2024) employed reinforcement learning

to improve control efficacy within adversarial

contexts, demonstrating its adaptability and

resilience.

Based on the literature review, this study

takes a step forward to propose a holistic

security framework for loTs that integrates

blockchain, deep learning, and game-theoretic

strategies. It contributes in the following ways:

e Blockchain-Based Resilient Architecture

e Attack detection by applying Deep learning &
Reinforcement learning approach

e Game-Theoretic & Reinforcement learning
technique for Attack Mitigation

1. Proposed Framework

The proposed system presents a strong

framework for loTs defending against cyber-

attacks based Figure 1. It fuses blockchain

technology, deep learning, reinforcement

learning, and game theory into a multi-layer

structure.

Each stage's output becomes the input for the

next:

1.Layer 1 Output (secure data) - Layer 2 Input

(anomaly detection).

2.layer 2 Output (anomalies) - Layer 3 Input

(reinforcement learning for action selection).

3.Layer 3 Output (actions) - Layer 4 Input

(game-theoretic  allocation for
optimization).
Final Workflow (Incorporating Logical Flow):

1. Input: Sensor data, system states.

2. Blockchain: Validate and secure data.

3. Anomaly Detection: Identify attack

patterns using deep learning.

resource

4. Reinforcement Learning: Optimize
defensive responses.

5. Game Theory: Allocate resources
efficiently.

This hierarchical flow ensures all components
work seamlessly, addressing both operational
and security challenges in 0TS environments.
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Proposed Methodology: Detailed Framework Steps

PO 1. Blockchain Layer 1:
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2. Blockchain Layer 2:
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- Continuous Learning (Reinforcement Learning)

h 4

4

3. Deep Learning for Anomaly Detection:
- CNN for Spatial Correlation
- RNN for Temporal Analysis
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4. Reinforcement Learning:
- DRL Agents for Adaptive Defense
- DQN, PPO for Policy Learning
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5. Game-Theoretic Defense:
- Nash Equilibrium
- Stackelberg Game for Proactive Defense
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6. Integrated Response:
- Blockchain-DRL Synergy
- Automated Defense with Smart Contracts
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Figure 1. Proposed Methodology: Framework Steps

2. Blockchain-Based
Architecture
The security and resilience of the loTs can
surely help provide seamless operational
capability in significant domains such as health
care, smart grids, and industrial automation.
Given the opportunity, we introduce a robust
two-layer blockchain architecture for the
protection of the 10TS networks against
sophisticated cyber attacks. A fault-tolerant
communication framework forms Layer 1,
while advanced defense mechanisms comprise

Layer 2.

Blockchain Layer 1:
Communication Architecture
This layer aims at enabling secure,
decentralized, and tamper-proof
communication among |oTS networks. By

Attack-Tolerant

Fault-Tolerant

leveraging the inherent features of blockchain,
Layer 1 ensures integrity, authenticity, and
non-repudiation of the inter-device
communications.

1. Decentralization and Distributed Ledger:
Blockchain provides security based on a
distributed ledger. The collapse of one or
more nodes cannot shut down the whole
system due to the consensus process in which
every node of the loTs network takes part;
hence, it can provide the required operation
and reliability. As shown by Mohammed et al.
(2024) and Dai et al. (2024), this decentralization
enhances fault tolerance, hence network
reliability under attack conditions.

2. Immutability and Data Integrity:

Each transaction or message placed onto the
blockchain is encrypted into the blockchain
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through a process called cryptographic

hashing; meaning, once it is written, it cannot
be changed.

Input: System data and network status.
Objective: Securely and reliably transmit data
across loTS nodes.

A transaction T;is hashed using a secure hash
function (Control Law):

H(T;)BSHARE256(T;)

where H(T;) is the hashed value. Any tampering
attempts would result in a hash mismatch,
thereby making such type of attack easily
detectable.

3. Consensus Mechanisms:

Agreement among nodes is achieved through
consensus algorithm, like PBFT. PBFT offers
low latency and high throughput and is, hence,
ideal for real-time I0TS applications. This
consensus ensures that invalid transactions are
rejected and any valid transaction is added to
the blockchain. Consensus Condition: For a
Itlransaction to be validated:

pl(V; BTrue)EQ
izl
Where:
e N =number of nodes.
e V= verification of i" node.
e Q=quorum threshold for consensus.

Output: Secure, tamper-proof communication

for anomaly detection.

4. Smart Contracts:

Smart contracts automate the enforcement of
security policies. Such a contract can specify
rules over many aspects like access control,
authentication, and automated threat
responses. A simple rule may take the form:

if (Anomaly Detected ) [@RTrigger
Response Action

5. Authentication and Access Control:
Blockchain's public-key cryptography secures the

Vol. 9, Issue: 2025

authentication of devices and users. Each device
has a unique identification via a key-pair
(KpubliC/ Kprivate) where:

Message Sin gurate B Encrypt (Message ,K

private )

Verification via the public key Kpuic ensures
that only messages via an authorized device
are passed to and from it.

Layer 1 Implementation Steps

1. Blockchain Network Setup: Design a private
or consortium blockchain that best suits the
0TS performance needs, balancing transaction
speed, security, and scalability.

2. Node Configuration: Blockchain nodes will
be deployed on sensors, actuators, and
controllers, which are 10TS devices,
considering computational compatibility.

3. Consensus Algorithm Selection: The PBFT
protocol provides a low-latency, high-
throughput environment; otherwise, other
consensus protocols might be used depending
on the application scenario.

4, Smart Contract Development: Smart
contracts that define access policies and
interaction protocols shall be developed and
deployed to.

5. Infrastructure Integration: Integrating the
blockchain layer with loTS infrastructure to

ensure smooth working without much
overhead.
Blockchain Layer 2: Advanced Defense
Mechanism

On top of the secure communication provided
by Layer 1, the second layer incorporates
mechanisms that detect and respond to
sophisticated attacks. It leverages distributed
ledger analytics, machine learning, and
reinforcement learning to ensure loTS stability
in dynamic threat environments.

Input: Secure transaction data from Layer 1.
Objective: Detect anomalies and trigger real-
time responses.
1. Distributed Ledger Analytics for Anomaly
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Detection:
Transaction patterns and data recorded in the
blockchain are always observed for any
anomaly, which might indicate an attack. As an
example, this might be an alert if there is a

Vol. 9, Issue: 2025

attack data to learn patterns related to
attacks.

2. Integration with Reinforcement Learning:
Deploy RL agents that learn with new attack
vectors and continuously optimize resource

suddensurge of traffic froma particutar mode— allocations.

The metrics used by the anomaly detection
model include:

. _ Observed Pattern? Expected Pattern
Ai

Expected Pattern

Where A;j > Threshold, showing anomaly
detection.

2. Forensic Analysis and Auditing:

The immutable nature of the blockchain
records enables forensic investigation through
tracing the sources of an attack, analyzing
compromised nodes. This feature is beneficial
to know the lifecycle of attacks and hence
understand how to mitigate them in the
future.

3. Continuous Learning and Adaptation:
Reinforcement learning models are integrated
to dynamically adjust the defense strategies.
These methods utilize a reward function,
which is maximized once an attack has been
successfully mitigated. The reward has been
summarized as follows :

R B Mitigation Success B False Positive Penalty
Resource Utilization Cost

Over time, the model continues to modify the
strategies to ensure excellent system
performance.

4. Real-Time Response and Automation:

The smart contract will automatically trigger
the defense mechanisms, which may be a node
isolation or resource reallocation, depending on
the detection outcome. For example:

if Aj RThreshold BTrigger Isolation

Protocol

Layer 2 Implementation Steps
1. Anomaly Detection Model Training: Train
the models on historical and simulated 10TS

3. Real-Time Deployment: Integrate the
detection models with blockchain analytics for
real-time monitoring and response.

4. Smart Contract-Based Automation of
Defense: Build smart contracts that will
automatically execute some predefined
defensive action upon the detection of any
anomaly.

The proposed blockchain-based architecture
integrates these two layers to provide a highly
resilient, real-time anomaly detection, and
efficient response mechanisms to safeguard
loTs networks against complex cyber-attacks.

4. Deep Learning and Reinforcement Learning-
Based Attack Detection

The proposed system involves the second layer
for the detection and mitigation of attacks in
loTs environments through utilizing advanced
deep learning and reinforcement learning
techniques. This layer copes with real-time
anomaly detection and adaptive mechanisms
in order to ensure continued security with
operational efficiency for loTs.

Deep Learning Models

Deep learning is the backbone of this anomaly

detection system. It utilizes supervised
learning  algorithms to build models
showcasing, from 1oTs data streams,

deviations from normal patterns of operation.
Key Components of Deep Learning Models:

1. Data Preprocessing and Feature Extraction:
-Noise Removal: Most sensor data, like
temperature, pressure, and voltage, tends to
be noisy. Cleaning such datasets involves
smoothing filters or noise-reduction
algorithms to remove inconsistencies.

- Feature Extraction: The process of extracting
important features using Fourier Transform
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for frequency analysis or Principal Component
Analysis (PCA) for reducing the dimensions
and retaining the important information.

The Fourier Transform decomposes the
time-series data into frequency components,

for examp: 8 28

X (f ) B  (te dt

where X(f) represents the frequency domain
and x(t) is the time-domain signal.
2. Anomaly Detection Models:

Vol. 9, Issue: 2025

increased volumes of data. Parallel processing
and deployment on edge devices reduce
latency and hence provide real-time detection
efficiently as indicated by Costa et al. (2024).

Deep reinforcement learning

Deep reinforcement learning (DRL) enhances
the adaptability of the system by learning
about optimal defense policies in dynamic,
rapidly changing threat landscapes. The DRL
agent interacts with loTs to learn a best policy
through the feedback.

Input: Features of detected anomalies and

- CNNs: CNNs are able to detect spatial
correlations within data such as sensor readings
in smart grids. The convolution operation
extracts feature in the form of spikes or

system states.

Objective: Optimize defense strategies
dynamically using reinforcement learning.

Key Components of DRL

anomalies:
(f Bg)(t)Bpp,f [@)g(t BR)IE

where f is the input signal and g is the kernel

function.

- RNNs: RNNs, in particular Long Short-Term
Memory (LSTM) networks record temporal
dependencies in sequences. LSTMs handle
long-term dependencies by means of gating
mechanisms:

h¢ Blog ,tanh(cy )

where ht is the hidden state, o¢ is the output

gate, and c¢) is the cell state.

Output: Alert and features of anomalies, which

serve as input to reinforcement learning.

3. Real-Time Operativity:

Models analyze streams of data in real time;
deviations from learned patterns flag potential
cyber- attacks. For instance, during smart grid
operation, if a sensor reports unusual voltage
spikes, then such a signal is flagged for
anomaly by the system. The response
mechanisms are triggered, including the
isolation of compromised components and/or
alerting of the administrators.

1. Learning Environment:
- Abstracting loTs environment into states,
actions, and rewards:

- States ( S ) : Represent system status -

sensor readings or network health.

- Actions: Isolate nodes, reallocate bandwidth,
or reconfigure network paths.

- Rewards: Represent the action's impact
on preventing ransomware-quantify to
describe the successful mitigation or wasting
of resources.

In that respect, the agent aims at maximizing

the cumulative reward:

k
Gt Rt mk m

k0

where y is the discount factor that strikes a
balance between immediate rewards and
long-term rewards.

2. Agent Architecture:

- DQN: Use neural networks to approximate
the Q-value function and make decisions to
optimize discrete actions:

4. Scalability: Q(s,a)@Q (s,a) ABER BEmaxQ(s’,a) BQ (s
Deep learning models are designed to scale; a)

therefore, 10TS environments can handle El
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where Q (s, a) is the expected reward for taking
action a in state s.

- Proximal Policy Optimization (PPO): This
efficiently balances exploration and exploitation
for continuous action spaces to ensure stable
learning.

3. Adaptation to Evolving Threats:

DRL models are constantly updated with new
policies to keep up with emerging data and
attack patterns. This makes the system resistant
to various new, complex attacks.

4. Integration with Blockchain:

- DRL agents make use of blockchain for
maintaining immutable records of the events
occurring on the system. This helps in training on
reliable datasets and creating tamper-proof logs
for forensic analysis.

The proposed system takes in deep learning's
pattern recognition capabilities, combines them
with the adaptability of DRL, thereby ensuring
attack detection and mitigation in [oTS
environments that is both robust and scalable.
This integrated approach addresses current
challenges while preparing for future, more
sophisticated cyber threats.

4. Game-Theoretic Defense Strategies

Game theory provides a mathematical
approach toward modeling the interactions
between attackers and defenders in loTs. In
the context of the proposed framework, this
approach allows. it to further forecast, analyze,
and counteract cyber-attacks. The goal of the
defense strategies is to optimize resource
allocation and response mechanisms w.r.t the
0TS resiliency.

Input: System state, anomaly features, and
defensive actions from reinforcement learning.
Objective: Allocate resources optimally for
attack mitigation.

Game Theory-Based Defense

Game theory models the conflict between
attackers and defenders as strategic games in
which both adversaries try to maximize
respective utilities, namely the success of an

Vol. 9, Issue: 2025

attack or the efficiency of a defense.

Nash Equilibrium

- Concept: Nash equilibrium is the stable state
where none of the players, either the attacker
or the defender, can improve his utility by
changing his strategy unilaterally.

The utility functions for attackers and defenders
are:

UAa (SaA ,Sp )BSuccess Rate of Attack

Cost of Attack
Up (SA ,Sp ) @ Effectiveness of Defense

Cost of Defense

where S, and Sp are the strategies of attackers
and defenders.

- Application: - It models the scenarios in
which the attackers choose targets, such as
nodes or sensors, and defenders allocate
resources like computation or bandwidth to
protect the loTS.

- The equilibrium helps find an optimum
between the attack efforts and defense
measures for the most efficient use of
resources (Zhang et al., 2024).

- Example: In a smart grid, a defender defends
some vital nodes, while the attacker tries to
disturb the distribution of energy. Under Nash
equilibrium, the defender's resource allocation
would minimize the success of the attack by
striking a balance between system cost and
efficiency.

Stackelberg Game

- Definition: A Stackelberg game is a
hierarchical game-theoretic model where one
player's (leader's) strategy commitment is
made first, followed by the other player's
strategy to act accordingly.

The defender's optimization problem is:
maxminUp (Sa ,Sp )

SD  SA

where the defender anticipates the attacker's
best response. Output: Optimized resource
allocation strategy.
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- Application: - The defender acts as the
leader, anticipating potential attack
strategies and committing resources
preemptively.

- The attacker, as the follower, adapts its

strategy based on the defender’s
commitment.
- This proactive approach enables the

defender to mitigate threats before they

escalate (Farraj et al., 2024).

- Example: During the event of a attack, the

defender predicts that an attacker will commit

resources to flood network channels.

Pre/delaying bandwidth for operationally

critical system use would mean that the

system is continued without interruption.
Optimization Goals:

- Minimizing the impact of successful attacks

- Maximizing the value of the defensive
resources assigned

- Minimizing costs involved in
protective countermeasures

Resilient Nash Equilibrium Seeking

deploying

The framework uses resilient Nash equilibrium
models in order to enhance |0oTS defenses
under attack conditions, taking adversarial
behavior and environmental uncertainties into
account.
Advanced Game-Theoretic Models
- These models extend the traditional Nash
equilibrium by incorporating aspects such as:
- Uncertainty Modeling: Incomplete
information about the attacker's strategy or
unexpected system failures.
- Dynamic Adjustments: Continuous updates of
defensive strategies whenever new threats
emerge or changes occur in system conditions.
- Risk Management: Strike a balance among
security, efficiency in operation, and limitation
of resources (Cai et al., 2024).
False Data Injection (FDI) Defense
- Scenario:
- In attacking agents inject false data into
sensors to mislead decision-making

Vol. 9, Issue: 2025

processes.

- Resilient Nash equilibrium models help
defenders allocate resources and monitor and
secure vulnerable sensors.

- It is via game-theoretic analysis that the
defender identifies the critical sensors based
on the impact each sensor has on system
stability and deploys her defense resources in
that form.

- Adaptive mechanisms redeploy resources
dynamically when attackers change their focus
on other parts of the system.

Multi-Agent Systems

- Application:

- Agents in multi-agent 0TS are both
defenders and functionals of the system, for
instance, interconnected smart grids.

- Resilient  Nash  equilibrium ensures
collaboration between agents on resource
sharing to defend the whole system.

The approach combines game-theoretic models,
such as Nash equilibrium and Stackelberg games,
with proactive dynamic methods for defending
against sophisticated cyberattacks on IoTS.
The embedding of resilient Nash equilibrium
makes the system dependable in unforeseen
situations, therefore highly adaptive and
secure.
5. Enhanced Security by combination of
methods
The framework goes further to strengthen the
security in loTS with the integration of
Blockchain Technology and Deep
Reinforcement Learning (DRL). In this hybrid
approach, the immutability and
decentralization from blockchain merge with
the predictive and adaptive capabilities of DRL,
thereby delivering a scalable, robust, and
adaptive security solution in dynamic and
high-risk environments.
Integration of Blockchain into Security
Blockchain provides 1oTS with a secure
platform for storing and managing data,
ensuring that loTS data, including all system
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activities, sensor readings, and control
commands, are recorded in nature with an
immutable record due to its decentralized and
tamper-proof features. This, in turn, enhances
the reliability of the data used for training DRL
models and hence ensures integrity in
decision-making processes when an attack
scenario is involved.

- Immutability: sensor data and system logs
are kept within the blockchain ledger.
Attackers will not be able to tamper with any
historical data, thus allowing the proper
training of DRL models and the effective
execution of the defensive strategy. Dai et al.
(2024).

- Decentralization: Blockchain retains data
across multiple nodes. By doing this, single
points of failure do not exist anymore. This
makes critical information accessible during
attacks.

- Transparent and Verifiable Data: All data in
the blockchain are audited and may become
verifiable by rightful parties, which will instill
more confidence in inbuilt 10TS defense
mechanisms.

Deep Reinforcement Learning for Adaptive

Defense

The DRL models interface with the blockchain
layer to offer adaptive and predictive defense
mechanisms. The DRL agents interact with the
environment of the loTs to learn an optimal
policy for providing maximum resilience for
the system and reducing the cyberattack
impact.

Agents Training

- Modelling Environment: loTs comprising
sensors, actuators, and communication
networks is modelled to present an
environment where DRL agents can interact.
States S, actions A, and rewards R define the
learning environment.

- Reward System:

- Positive rewards given for the mitigation of
attacks, system stability, and resource

Vol. 9, Issue: 2025

utilization.
- Negative rewards introduced for delaying
response, resource wastage, or other such
actions that result in the failure to prevent the
disruption of a system.

BrR1, if attack
mitigated R 1,if
attack successfu

Algorithms and Architectures

- Deep Q-Networks: Discrete action spaces are
used for node isolation and communication
channel switching.

- Proximal Policy Optimization: Continuous
action spaces like dynamic adjustment of
control parameters during the attack flow are
handled by PPO.

- Actor-Critic Methods: Integrates value-based
methods with policy-based approaches for
faster convergence and more robust decisions.

Blockchain-DRL Synergy
This would be the leverage of the unique
strengths of both blockchain and DRL in
enhancement of the general security and
adaptability of the system.

- Data Integrity for Training:

- Blockchain creates one source of verified
historical and real-time data on which to train
DRL models.

- Ensuring that DRL agents are trained based
on sound data would lead to much more
effective and secure defense.

- Decentralized Decision-Making:

-Agents deployed at various nodes use DRL and,
therefore, can act independently, while their
coordination through blockchain scales up the
defenses uniformly within the network.

- Smart Contracts for Automated Defense

- Blockchain smart contracts apply automated
defensive measures suggested by the DRL
agents. Once a DRL agent detects an attack,
for instance, a smart contract may
automatically change the setting of the
network or notify the operators.

- Adaptive Policies:
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- DRL updates its policies continuously from
the new attack data recorded in the
blockchain to keep the system updated
against emerging threats.

Workflow of the Implementation
1. Data Collection and Storage:

- loTs stream data to the blockchain ledger for

secure, tamper-proof storage.

2. Model Training:

* DRL models learn from historical and real-
time data of the blockchain to develop
optimal solutions with regard to attack
detection and response.

3. Deployment:

* Trained DRL agents are deployed across the
loTs network. The correctness of final
decisions is checked and executed through
smart contracts on the blockchain.

4. Continual Learning:

- DRL agents' policies are updated with the
newest information on the blockchain as new
attack scenarios are encountered to keep it
adaptive.

Advantages of Blockchain-Based DRL

- Scalability: The decentralized nature of
blockchain and distributed operation of the
DRL agents ensure that the system can be
easily scaled up for large loTs environments.

- Robustness: Immutability of blockchain
enhances the reliability of DRL model training
and decision-making.

- Real-Time Defense: The DRL agent provides
an adaptive and fast response against agile
threats with reduced attack impact.

- Automation: Defensive actions are
automatically executed by smart contracts that
reduce human interaction.

- Coordination: Blockchain enables
coordination between multiple DRL agents in
a distributed IoTS network.

By integrating blockchain with DRL, loTs will
have a robust and adaptive defense
mechanism. The blockchain layer assures data
integrity and decentralization, while the DRL

Vol. 9, Issue: 2025

agents provide intelligent and scalable
responses against cyber-attacks that are
continuously evolving. This will ensure that
loTs remains secure, reliable, and operational
against sophisticated attacks.
Results and Evaluation
The experiments have been carried out with the
following settings:
Dataset: loT Network Intrusion Dataset was
preprocessed and normalized in order to meet
the requirements for training and testing phases.
- Proposed Framework: The architecture
incorporates blockchain, deep learning (CNN and

LSTM model), reinforcement learning, and
game-theoretic methods to ensure strong
security.

- Attack Scenarios:

1. Normal operation-no attack.

2. FDI attack-system output.

To detect attacks and distinguish between normal
and abnormal data, a threshold value (Threshold)
of 1.5 was considered. This value was chosen in
such a way that it could identify data that has
undergone abnormal changes due to attacks.
The identification criterion is that any data value
whose absolute value is greater than the
threshold is identified as abnormal data (attack).
This threshold value was determined based on
an initial examination of the data and the
operating conditions of the system.

A blockchain network simulation is performed
in 1oTs. In this simulation, 10 nodes are
defined, each representing a device. The
communication between devices is modeled as
secure transactions. To identify and distinguish
normal data from abnormal data, the
transaction data is divided into two categories:
normal data with the value Secure and
abnormal data representing attacks with the
value Compromised.

Table 1 shows the structure of transactions. In
this table, the Source and Destination columns
represent the source and destination devices,
Transaction_Data represents the transaction
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status, and Attack_Flag represents whether Device_2 and Device_3 is identified as an attack

@ the transaction is normal or abnormal. For and the Attack_Flag value is 1.
. - example, the transaction between devices
Table 1

Simulated transaction data on the blockchain network

Source Destination Transaction_Data Attack_Flag
Device_0 Device_1 Secure 0
Device_1 Device_2 Secure 0
Device_2 Device_3 Secure 0
Device_3 Device_4 Secure 0
Device 2 Device_3 Compromised 1

In this environment, the actions of the model

DRLs are divided into two categories:

1. Action 0: No Action: No defensive action is
taken.

2. Action 1: Defensive Action: Defensive
action is taken.

In the simulation process, control actions

are applied based on the reinforcement

learning policy and the system state is

updated randomly from the training data.

This initial state allows the model to adopt

an optimal policy to reduce risk based on

the dynamics of real data and the detection

of attacks.

To combine blockchain with DRL,a

Table 2

simulated model was used. In this model,
the network transaction data is defined in
the form of a blockchain, and each
transaction has the properties Source,
Destination, Transaction Data, and Attack
Flag. The DRL model dynamically analyzes
transactions and applies a defensive action
with a DRL_Action value of 1 if an attack is
detected (Attack Flag value of 1).
Otherwise, the DRL_Action value remains at
0.The following table2 shows an example of
the updated blockchain data after applying
the DRL model.

Example of the updated blockchain data after applying the DRL

Source Destination Transaction Data Attack Flag DRL_Action
Device_0 Device_1 Secure 0 0
Device_1 Device 2 Secure 0 0
Device_2 Device_3 Secure 0 0
Device_3 Device_4 Secure 0 0
Device_2 Device_3 Compromised 1 1
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In the above example, the transaction
between Device_2 and Device_3 is detected
as an attack (Attack _Flag=1) and the
DRL model has triggered the
associated defensive action.

(DRL_Action=1). This approach demonstrates
the ability of the DRL model to detect and
respond to cyberattacks in blockchain
systems.

Evaluation Scenarios and Results

System Response under Normal and Attack
Conditions

Figure 2 depicts the system behavior at three
conditions: normal operation and FDI attack.
From that the following can be obtained:
Stable and repetitive feature values when the
system is under normal conditions.

Severe abnormalities during FDI attacks,
which in turn is depicted by variation in the
pattern of features.

The system is capable of detecting such
variations and isolating them so that
operations remain safe.
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System Response: No Attack, FDI Attacks
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Figure 2. System Response Under No Attack and Attack Scenarios

System Behavior Under FDI Attack on Output
Figure 3 shows the system's response to a
detected FDI attack. The detected attack
produced manipulated output values well

outside any normal behavior. The

framework operated to clearly detect these

anomalies and thus segregated the
compromised outputs to ensure appropriate
system responses.

System Response with FDI Attack on Output

—4

Feature Value

~&= FDI Attack on Output

20

40
Samples

Figure 3. System with FDI Attack on Output

Detection of FDI Attacks

Figure 4 is detection of FDI attacks by the
proposed detector. The system was able to
maintain a high detection rate, flagging
malicious modifications to the output data

International Journal of Information Management Scienc

quite well. This quick detection ensured that
defensive action was timely and hence
prevented the system
compromise.
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; % Detection of FDI Attack
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Figure 4. Detection of FDI Attack

Evaluation Metrics Accuracy and Loss indicating that the proposed system is
The accuracy and loss metrics of training very effective in identifying between
and testing are shown in Figures 4 and 5 normal and attack scenarios.
Key observations include: - Low loss values indicate that the proposed
- High training and testing accuracy, deep learning models are robust.
Tralnlno and Validation Accuracy
1.000 P . —— e —— ———8
0.998
3.0,906'
g

0.994

0.992 1

~&- Training Accuracy
—&— Validation Accuracy

0.990

0 2 4 . 8
Epochs

Figures 5. Accuracy of training and testing
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Training and Validation Loss
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Figures 6. Loss metrics of training and testing
Detection Rate throughout. Indeed, both types of attacks
The proposed integrated framework was were correctly detected while minimizing
effective in detecting FDI attacks, as the false positives and false negatives based in
detection rate of these attacks was high Figure 7.
Detection and False Positive Rates
mmmTrue arrack Detection Rate
Bl False Positive Rate
0.8 4
0.6
L
e
0.4 4
0.2 4
0.0 -
FDI Attack
Figure 7. Detection Rate
Figure 8 shows the confusion matrix. True conditions. A relatively high value indicates
Negative (green), the number of instances in the system’s ability to detect normal
which the system correctly detected normal conditions.
False Positive (red), the number of instances value indicates a relatively high false
in which the system incorrectly detected an positive rate, which may cause false alarms.
attack, when there was no attack. A high False Negative (orange), the number of
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instances in which the system failed to
detect an attack.

A low value indicates a good ability of the
system to detect attacks. True Positive
(blue), the number of instances in which the
system correctly detected an attack. A low

Vol. 9, Issue: 2025

value may be due to the complexity of the
attacks or the limitations of the detection
model.

This graph shows that the system performed
well in detecting attacks and normal
conditions.

Confusion Matrix Components

Count

True Negative

False Positive

True Positive

False Negative

Figure 8. Confusion matrix

International Journal of Information Management Sciences (1JIMS) - http://ijims.org/

= B

135



Conclusion

The  developed methodology  involves
integrating blockchain technology, deep
learning models, reinforcement learning, and
game theory into one integrated, multilayer
security architecture. The system operates in
the following layers:

1. Blockchain Layer: This layer enables secure
and tamper-proof communication channels
and records in the IloTs. Due to the
decentralization, the risks concerning single
points of failure are eliminated, while using
smart contracts automates responses to
detected threats, minimizing the response
time.

2. Deep Learning Layer: These include real-
time anomaly detection using CNNs and LSTM
networks. All these models are trained to
identify normal system behaviors from those
that signal an attack with unparalleled
accuracy and very low false alarms.

3. Reinforcement Learning Layer: Adaptive
decision-making is performed by DRL. The
system can make changes to dynamically
adapt to the evolving attack vectors, such as
FDI attacks, and turn the defense mechanisms
proactive.

4. Game-Theoretic Layer: Attack-defense
interactions are modeled using Nash
Equilibrium and Stackelberg game theory. It
leads to optimal resource allocation and
strategic decision making to efficiently
mitigate the attacks.

The system's performance was evaluated
using the IloT Network Intrusion Dataset
simulating normal operations and attack
scenarios:

1. Detection Rate: The detection rate for FDI
attacks remained consistently high throughout
the evaluation, confirming the system's
effectiveness in identifying malicious activities.
The framework successfully minimized false
positives and false negatives, enhancing its
reliability in real-world applications.

Vol. 9, Issue: 2025

2. False Positive and Negative Rates: The code
extensively measured these metrics, indicating
a small rate of false positives and only a few
missed detections. This allows the system to
ensure that valid activities will not be classified
as false, helping maximize the efficiency of
operations.

3. Scalability: The modular architecture
present in the framework has proved
scalable, fully integrative with 0TS
architectures, and extendable for system
growth.

4. Efficiency: The system could detect and
mitigate attacks in runtime with efficiency;
thus, it is practically applicable to large-scale
0TS environments.

6. Future Work Direction

While the proposed framework has been
effective, there are some points that require
further exploration to enhance the capabilities
and adapt to future challenges:

1. Advanced Threat Scenarios: Future work
can also be directed to the extension of the
current framework for complex scenarios
including multivector attack, insider threat,
and APTs.

2. Hybrid Models: Integration of hybrid
models involving deep learning with graph-
based approaches would help in better
anomaly detection accuracy and scalability.

3. Optimization: Blockchain-based loTs
solutions may bring extra computation and
energy overhead. In the future, energy-
efficient blockchain consensus mechanisms
could be studied, such as PoS or DAGs.

The proposed framework has already
demonstrated  practical feasibility and
scalability through extensive evaluations. Its
layered approach comprehensively covers
security against all critical cyber attacks, while
the integration of blockchain, deep learning,
and game theory makes this framework highly
robust and adaptive. Addressing the
challenges outlined in future work, this
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framework can indeed open ways to secure,
resilient, and efficient loTs operations in the
ever- changing panorama of cyber threats.
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