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This study examines the relationship between Social Responsibility, Knowledge 
Management, and sustainable development in Hayel Saeed Ana'am Group in 
Yemen. The research aims to explore how social responsibility influences 
knowledge management processes and contributes to achieving the Sustainable 
Development Goals. Data were collected using a structured questionnaire 
administered to 191 participants, and the instrument's reliability and validity 
were confirmed. The data were analyzed using SPSS 28 and SmartPLS 4.0.5.9. 
The results reveal that Social Responsibility significantly influences both 
Knowledge Management and Sustainable Development. Furthermore, 
Knowledge Management acts as a mediator between Social Responsibility and 
Sustainable Development. The findings underscore the importance of integrating 
social responsibility into organizational strategies to enhance knowledge 
management practices, which in turn drive sustainable development outcomes. 
The study contributes to the growing body of knowledge on the 
interconnectedness of these dimensions, providing valuable insights for 
organizations seeking to improve their sustainability practices through 
responsible management and knowledge processes. 
Keywords: Social Responsibility; Knowledge Management; Sustainable 
Development. 

 

Introduction 
IoT-based Systems (IoTS) have emerged as a 

fundamental component for essential 

infrastructure across multiple sectors, such as 

industrial control systems, healthcare, 

transportation, and intelligent grid networks. 

These systems amalgamate physical processes 

with computational and communication 

assets, facilitating real-time oversight, 

regulation, and enhancement (Mohammed et 

al., 2024). The intrinsic interconnection of IoTs 

makes them more prone to all sorts of cyber 

threats, including false data injection attacks, 

denial-of-service attacks, and jamming attacks, 

which can compromise their security, 

reliability, and operational performance (Dai 

et al., 2024; Balogun et al., 2024). 

For instance, medical cyber-physical systems 

used in the medical domain have high 

vulnerability to cyber attacks, which could steal 

sensitive patient information or interrupt 

critical life-sustaining services (Mohammed et 

al., 2024; Balogun et al., 2024). Equally, the 

smart grid infrastructures are exposed to a 

connected series of cyber attacks that are able 

to compromise the grid operations and cause 

mass-scale power failures (Farraj et al., 2024). 

The critical role CPS play in society underlines 

the necessity for their security and resilience 

in view of emerging threats. 

Traditional security mechanisms often don't 
bring out the complexity and dynamic nature of 

CPS, which needs innovative approaches. In 
this context, emerging technologies in 
blockchain, deep learning, and game theory 

hold very promising solutions for CPS security. 
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The decentralized and immutable blockchain 

structure provides a guarantee for data 

integrity, setting up a robust foundation for 

secure communications (Dai et al., 2024; 

Mohammed et al., 2024). Deep learning 

techniques enable real-time anomaly 

detection through complex patterns in system 

behavior (Selim et al., 2024; Costa et al., 2024). 

Besides, the game theory brings in strategic 

insights in adversarial interactions to improve 

the defense against advanced attackers (Ge et 

al., 2024; Wang et al., 2024). 

Several studies have proposed new methods 

to face the security issues in CPS. Mohammed 

et al. (2024) pointed out that the integration of 

deep learning and blockchain may be an 

effective method to secure healthcare data in 

industrial CPS. Dai et al. (2024) reported a 

blockchain framework to improve cyber-

resilience against FDI attacks of microgrid 

distributed control systems. Similarly, Balogun 

et al. (2024) proposed a deep learning 

approach embedded with blockchain to 

enhance the security of next-generation 

medical IoTs. 

The area of CPS security has had wide 

applications of game theory. Zhang et al. 

(2024) analyzed a game-theoretic approach for 

enhancing constraint-following control in CPS 

under cyber threats. Farraj et al. (2024) 

analyzed an attack-mitigation strategy of 

switching attacks in smart grid systems by a 

game-theoretical model. Moreover, Wang et 

al. (2024) presented the application of a 

Stackelberg game-theoretical model for 

optimal attack strategy for CPS. 

Deep learning, especially in the realm of deep 

reinforcement learning, has surfaced as an 

effective instrument for adaptive control and 

the mitigation of cyber threats. Selim et al. 

(2024) conducted an exploration of deep 

reinforcement learning aimed at protecting 

distribution systems from cyber attacks. Costa 

et al. (2024) employed reinforcement learning 

to improve control efficacy within adversarial 

contexts, demonstrating its adaptability and 

resilience. 

Based on the literature review, this study 

takes a step forward to propose a holistic 

security framework for IoTs that integrates 

blockchain, deep learning, and game-theoretic 

strategies. It contributes in the following ways: 

• Blockchain-Based Resilient Architecture 

• Attack detection by applying Deep learning & 
Reinforcement learning approach 

• Game-Theoretic & Reinforcement learning 
technique for Attack Mitigation 

1. Proposed Framework 
The proposed system presents a strong 

framework for IoTs defending against cyber-

attacks based Figure 1. It fuses blockchain 

technology, deep learning, reinforcement 

learning, and game theory into a multi-layer 

structure. 

Each stage's output becomes the input for the 
next: 

1. Layer 1 Output (secure data) → Layer 2 Input 
(anomaly detection). 

2. Layer 2 Output (anomalies) → Layer 3 Input 
(reinforcement learning for action selection). 

3. Layer 3 Output (actions) → Layer 4 Input 

(game-theoretic allocation for resource 

optimization). 

Final Workflow (Incorporating Logical Flow): 

1. Input: Sensor data, system states. 

2. Blockchain: Validate and secure data. 

3. Anomaly Detection: Identify attack 
patterns using deep learning. 

4. Reinforcement Learning: Optimize 
defensive responses. 

5. Game Theory: Allocate resources 
efficiently. 

This hierarchical flow ensures all components 
work seamlessly, addressing both operational 
and security challenges in IoTS environments.
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Figure 1. Proposed Methodology: Framework Steps 

 

2. Blockchain-Based Attack-Tolerant 
Architecture 

The security and resilience of the IoTs can 

surely help provide seamless operational 

capability in significant domains such as health 

care, smart grids, and industrial automation. 

Given the opportunity, we introduce a robust 

two-layer blockchain architecture for the 

protection of the IoTS networks against 

sophisticated cyber attacks. A fault-tolerant 

communication framework forms Layer 1, 

while advanced defense mechanisms comprise 

Layer 2. 

Blockchain Layer 1: Fault-Tolerant 
Communication Architecture 

This layer aims at enabling secure, 

decentralized, and tamper-proof 

communication among IoTS networks. By 

leveraging the inherent features of blockchain, 

Layer 1 ensures integrity, authenticity, and 

non-repudiation of the inter-device 

communications. 

1. Decentralization and Distributed Ledger: 

Blockchain provides security based on a 

distributed ledger. The collapse of one or 

more nodes cannot shut down the whole 

system due to the consensus process in which 

every node of the IoTs network takes part; 

hence, it can provide the required operation 

and reliability. As shown by Mohammed et al. 

(2024) and Dai et al. (2024), this decentralization 

enhances fault tolerance, hence network 

reliability under attack conditions. 

2. Immutability and Data Integrity: 

Each transaction or message placed onto the 
blockchain is encrypted into the blockchain 
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through a process called cryptographic 

hashing; meaning, once it is written, it cannot 
be changed. 

Input: System data and network status. 

Objective: Securely and reliably transmit data 
across IoTS nodes. 
A transaction Ti is hashed using a secure hash 
function (Control Law): 

H (Ti )  SHA  256(Ti ) 

 
where H(Ti) is the hashed value. Any tampering 

attempts would result in a hash mismatch, 

thereby making such type of attack easily 

detectable. 

3. Consensus Mechanisms: 
Agreement among nodes is achieved through 

consensus algorithm, like PBFT. PBFT offers 

low latency and high throughput and is, hence, 

ideal for real-time IoTS applications. This 

consensus ensures that invalid transactions are 

rejected and any valid transaction is added to 

the blockchain. Consensus Condition: For a 

transaction to be validated: 
N 

1(V i True )  Q 

i 1 

Where: 

• N = number of nodes. 

• Vi = verification of ith node. 

• Q = quorum threshold for consensus. 

Output: Secure, tamper-proof communication 
for anomaly detection. 

4. Smart Contracts: 

Smart contracts automate the enforcement of 

security policies. Such a contract can specify 

rules over many aspects like access control, 

authentication, and automated threat 

responses. A simple rule may take the form: 

if (Anomaly Detected ) Trigger 

Response Action 

 
 

5. Authentication and Access Control: 

Blockchain's public-key cryptography secures the 

authentication of devices and users. Each device 

has a unique identification via a key-pair 
(Kpublic, Kprivate) where: 

Message Sin gurate  Encrypt (Message ,K 

private ) 

 
Verification via the public key Kpublic ensures 

that only messages via an authorized device 

are passed to and from it. 

Layer 1 Implementation Steps 

1. Blockchain Network Setup: Design a private 

or consortium blockchain that best suits the 

IoTS performance needs, balancing transaction 

speed, security, and scalability. 

2. Node Configuration: Blockchain nodes will 

be deployed on sensors, actuators, and 

controllers, which are IoTS devices, 

considering computational compatibility. 

3. Consensus Algorithm Selection: The PBFT 
protocol provides a low-latency, high-

throughput environment; otherwise, other 

consensus protocols might be used depending 

on the application scenario. 

4. Smart Contract Development: Smart 
contracts that define access policies and 

interaction protocols shall be developed and 

deployed to. 

5. Infrastructure Integration: Integrating the 
blockchain layer with IoTS infrastructure to 

ensure smooth working without much 
overhead. 

Blockchain Layer 2: Advanced Defense 
Mechanism 

On top of the secure communication provided 

by Layer 1, the second layer incorporates 

mechanisms that detect and respond to 

sophisticated attacks. It leverages distributed 

ledger analytics, machine learning, and 

reinforcement learning to ensure IoTS stability 

in dynamic threat environments. 

Input: Secure transaction data from Layer 1. 

Objective: Detect anomalies and trigger real-
time responses. 

1. Distributed Ledger Analytics for Anomaly 
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Detection: 
Transaction patterns and data recorded in the 

blockchain are always observed for any 

anomaly, which might indicate an attack. As an 

example, this might be an alert if there is a 

sudden surge of traffic from a particular node. 

The metrics used by the anomaly detection 

model include: 

Ai  
Observed Pattern  Expected Pattern 

Expected Pattern 
 

Where 𝐴𝑖 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, showing anomaly 

detection. 
2. Forensic Analysis and Auditing: 

The immutable nature of the blockchain 

records enables forensic investigation through 
tracing the sources of an attack, analyzing 
compromised nodes. This feature is beneficial 

to know the lifecycle of attacks and hence 
understand how to mitigate them in the 

future. 

3. Continuous Learning and Adaptation: 
Reinforcement learning models are integrated 

to dynamically adjust the defense strategies. 

These methods utilize a reward function, 

which is maximized once an attack has been 

successfully mitigated. The reward has been 

summarized as follows : 

R  Mitigation Success  False Positive Penalty 

 Resource Utilization Cost 

 
Over time, the model continues to modify the 
strategies to ensure excellent system 
performance. 

4. Real-Time Response and Automation: 
The smart contract will automatically trigger 

the defense mechanisms, which may be a node 

isolation or resource reallocation, depending on 

the detection outcome. For example: 

if Ai Threshold Trigger Isolation 

Protocol 

 
Layer 2 Implementation Steps 
1. Anomaly Detection Model Training: Train 
the models on historical and simulated IoTS 

attack data to learn patterns related to 

attacks. 

2. Integration with Reinforcement Learning: 
Deploy RL agents that learn with new attack 

vectors and continuously optimize resource 
allocations. 

3. Real-Time Deployment: Integrate the 

detection models with blockchain analytics for 

real-time monitoring and response. 

4. Smart Contract-Based Automation of 

Defense: Build smart contracts that will 
automatically execute some predefined 

defensive action upon the detection of any 
anomaly. 

The proposed blockchain-based architecture 

integrates these two layers to provide a highly 

resilient, real-time anomaly detection, and 

efficient response mechanisms to safeguard 

IoTs networks against complex cyber-attacks. 

4. Deep Learning and Reinforcement Learning-
Based Attack Detection 
The proposed system involves the second layer 

for the detection and mitigation of attacks in 

IoTs environments through utilizing advanced 

deep learning and reinforcement learning 

techniques. This layer copes with real-time 

anomaly detection and adaptive mechanisms 

in order to ensure continued security with 

operational efficiency for IoTs. 

Deep Learning Models 
Deep learning is the backbone of this anomaly 

detection system. It utilizes supervised 

learning algorithms to build models 

showcasing, from IoTs data streams, 

deviations from normal patterns of operation. 

Key Components of Deep Learning Models: 
1. Data Preprocessing and Feature Extraction: 

-Noise Removal: Most sensor data, like 

temperature, pressure, and voltage, tends to 
be noisy. Cleaning such datasets involves 

smoothing filters or noise-reduction 
algorithms to remove inconsistencies. 

- Feature Extraction: The process of extracting 

important features using Fourier Transform 
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for frequency analysis or Principal Component 

Analysis (PCA) for reducing the dimensions 

and retaining the important information. 

The Fourier Transform decomposes the 

time-series data into frequency components, 
for example: 

  j 2 ft 
X (f )  

 
x (t )e dt 

 
where X(f) represents the frequency domain 
and x(t) is the time-domain signal. 

2. Anomaly Detection Models: 
- CNNs: CNNs are able to detect spatial 

correlations within data such as sensor readings 
in smart grids. The convolution operation 
extracts feature in the form of spikes or 

anomalies: 

(f  g )(t )  
 
f ( )g (t  )d  

 
where f is the input signal and g is the kernel 
function. 

- RNNs: RNNs, in particular Long Short-Term 
Memory (LSTM) networks record temporal 

dependencies in sequences. LSTMs handle 

long-term dependencies by means of gating 
mechanisms: 

ht  ot , tanh(ct ) 

where ℎ𝑡 is the hidden state, 𝑜𝑡 is the output 

gate, and 𝑐𝑡) is the cell state. 
Output: Alert and features of anomalies, which 
serve as input to reinforcement learning. 

3. Real-Time Operativity: 
Models analyze streams of data in real time; 

deviations from learned patterns flag potential 

cyber- attacks. For instance, during smart grid 

operation, if a sensor reports unusual voltage 

spikes, then such a signal is flagged for 

anomaly by the system. The response 

mechanisms are triggered, including the 

isolation of compromised components and/or 

alerting of the administrators. 

4. Scalability: 

Deep learning models are designed to scale; 

therefore, IoTS environments can handle 

increased volumes of data. Parallel processing 

and deployment on edge devices reduce 

latency and hence provide real-time detection 

efficiently as indicated by Costa et al. (2024). 

Deep reinforcement learning 
Deep reinforcement learning (DRL) enhances 

the adaptability of the system by learning 

about optimal defense policies in dynamic, 

rapidly changing threat landscapes. The DRL 

agent interacts with IoTs to learn a best policy 

through the feedback. 

Input: Features of detected anomalies and 
system states. 

Objective: Optimize defense strategies 
dynamically using reinforcement learning. 

Key Components of DRL 

1. Learning Environment: 

- Abstracting IoTs environment into states, 
actions, and rewards: 

- States ( S ) : Represent system status - 
sensor readings or network health. 

- Actions: Isolate nodes, reallocate bandwidth, 
or reconfigure network paths. 

- Rewards: Represent the action's impact 

on preventing ransomware-quantify to 

describe the successful mitigation or wasting 
of resources. 

In that respect, the agent aims at maximizing 
the cumulative reward: 

 

Gt  
k 

Rt k 1 

k 0 
 

where 𝛾 is the discount factor that strikes a 
balance between immediate rewards and 

long-term rewards. 

 
2. Agent Architecture: 
- DQN: Use neural networks to approximate 

the Q-value function and make decisions to 
optimize discrete actions: 

  
Q (s ,a) Q (s ,a)   R   maxQ (s ',a ') Q (s 
,a)  

 '  
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where Q (s, a) is the expected reward for taking 
action a in state s. 

- Proximal Policy Optimization (PPO): This 
efficiently balances exploration and exploitation 
for continuous action spaces to ensure stable 

learning. 

3. Adaptation to Evolving Threats: 
DRL models are constantly updated with new 
policies to keep up with emerging data and 

attack patterns. This makes the system resistant 
to various new, complex attacks. 

4. Integration with Blockchain: 
- DRL agents make use of blockchain for 

maintaining immutable records of the events 

occurring on the system. This helps in training on 

reliable datasets and creating tamper-proof logs 

for forensic analysis. 

The proposed system takes in deep learning's 

pattern recognition capabilities, combines them 

with the adaptability of DRL, thereby ensuring 

attack detection and mitigation in IoTS 

environments that is both robust and scalable. 

This integrated approach addresses current 

challenges while preparing for future, more 

sophisticated cyber threats. 

4. Game-Theoretic Defense Strategies 

Game theory provides a mathematical 

approach toward modeling the interactions 

between attackers and defenders in IoTs. In 

the context of the proposed framework, this 

approach allows. it to further forecast, analyze, 

and counteract cyber-attacks. The goal of the 

defense strategies is to optimize resource 

allocation and response mechanisms w.r.t the 

IoTS resiliency. 

Input: System state, anomaly features, and 

defensive actions from reinforcement learning. 

Objective: Allocate resources optimally for 
attack mitigation. 

Game Theory-Based Defense 

Game theory models the conflict between 

attackers and defenders as strategic games in 

which both adversaries try to maximize 

respective utilities, namely the success of an 

attack or the efficiency of a defense. 

Nash Equilibrium 
- Concept: Nash equilibrium is the stable state 
where none of the players, either the attacker 
or the defender, can improve his utility by 

changing his strategy unilaterally. 

The utility functions for attackers and defenders 
are: 

U A (SA ,SD )  Success Rate of Attack  

Cost of Attack 

U D (SA ,SD )  Effectiveness of Defense  

Cost of Defense 
 

where SA and SD are the strategies of attackers 
and defenders. 

- Application: - It models the scenarios in 
which the attackers choose targets, such as 

nodes or sensors, and defenders allocate 
resources like computation or bandwidth to 

protect the IoTS. 

- The equilibrium helps find an optimum 

between the attack efforts and defense 

measures for the most efficient use of 

resources (Zhang et al., 2024). 

- Example: In a smart grid, a defender defends 

some vital nodes, while the attacker tries to 

disturb the distribution of energy. Under Nash 

equilibrium, the defender's resource allocation 

would minimize the success of the attack by 

striking a balance between system cost and 

efficiency. 

Stackelberg Game 
- Definition: A Stackelberg game is a 

hierarchical game-theoretic model where one 

player's (leader's) strategy commitment is 

made first, followed by the other player's 

strategy to act accordingly. 

The defender's optimization problem is: 
max minUD (SA ,SD ) 
SD SA 

 
where the defender anticipates the attacker's 
best response. Output: Optimized resource 
allocation strategy. 
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- Application: - The defender acts as the 

leader, anticipating potential attack 

strategies and committing resources 

preemptively. 

- The attacker, as the follower, adapts its 
strategy based on the defender’s 
commitment. 

- This proactive approach enables the 

defender to mitigate threats before they 

escalate (Farraj et al., 2024). 

- Example: During the event of a attack, the 

defender predicts that an attacker will commit 

resources to flood network channels. 

Pre/delaying bandwidth for operationally 

critical system use would mean that the 

system is continued without interruption. 

Optimization Goals: 
- Minimizing the impact of successful attacks 

- Maximizing the value of the defensive 
resources assigned 

- Minimizing costs involved in deploying 
protective countermeasures 

Resilient Nash Equilibrium Seeking 

The framework uses resilient Nash equilibrium 

models in order to enhance IoTS defenses 
under attack conditions, taking adversarial 
behavior and environmental uncertainties into 

account. 

Advanced Game-Theoretic Models 

- These models extend the traditional Nash 
equilibrium by incorporating aspects such as: 

- Uncertainty Modeling: Incomplete 

information about the attacker's strategy or 

unexpected system failures. 

- Dynamic Adjustments: Continuous updates of 

defensive strategies whenever new threats 

emerge or changes occur in system conditions. 

- Risk Management: Strike a balance among 

security, efficiency in operation, and limitation 
of resources (Cai et al., 2024). 

False Data Injection (FDI) Defense 

- Scenario: 

- In attacking agents inject false data into 
sensors to mislead decision-making 

processes. 

- Resilient Nash equilibrium models help 

defenders allocate resources and monitor and 

secure vulnerable sensors. 

- It is via game-theoretic analysis that the 

defender identifies the critical sensors based 
on the impact each sensor has on system 
stability and deploys her defense resources in 

that form. 

- Adaptive mechanisms redeploy resources 
dynamically when attackers change their focus 
on other parts of the system. 

Multi-Agent Systems 

- Application: 

- Agents in multi-agent IoTS are both 

defenders and functionals of the system, for 

instance, interconnected smart grids. 

- Resilient Nash equilibrium ensures 

collaboration between agents on resource 

sharing to defend the whole system. 

The approach combines game-theoretic models, 

such as Nash equilibrium and Stackelberg games, 

with proactive dynamic methods for defending 

against sophisticated cyberattacks on IoTS. 

The embedding of resilient Nash equilibrium 

makes the system dependable in unforeseen 

situations, therefore highly adaptive and 

secure. 

5. Enhanced Security by combination of 
methods 

The framework goes further to strengthen the 

security in IoTS with the integration of 

Blockchain Technology and Deep 

Reinforcement Learning (DRL). In this hybrid 

approach, the immutability and 

decentralization from blockchain merge with 

the predictive and adaptive capabilities of DRL, 

thereby delivering a scalable, robust, and 

adaptive security solution in dynamic and 

high-risk environments. 

Integration of Blockchain into Security 
Blockchain provides IoTS with a secure 
platform for storing and managing data, 

ensuring that IoTS data, including all system 
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activities, sensor readings, and control 

commands, are recorded in nature with an 

immutable record due to its decentralized and 

tamper-proof features. This, in turn, enhances 

the reliability of the data used for training DRL 

models and hence ensures integrity in 

decision-making processes when an attack 

scenario is involved. 

- Immutability: sensor data and system logs 
are kept within the blockchain ledger. 

Attackers will not be able to tamper with any 
historical data, thus allowing the proper 

training of DRL models and the effective 
execution of the defensive strategy. Dai et al. 
(2024). 

- Decentralization: Blockchain retains data 

across multiple nodes. By doing this, single 

points of failure do not exist anymore. This 

makes critical information accessible during 

attacks.  

- Transparent and Verifiable Data: All data in 

the blockchain are audited and may become 

verifiable by rightful parties, which will instill 

more confidence in inbuilt IoTS defense 

mechanisms. 

Deep Reinforcement Learning for Adaptive 
Defense 
The DRL models interface with the blockchain 

layer to offer adaptive and predictive defense 

mechanisms. The DRL agents interact with the 

environment of the IoTs to learn an optimal 

policy for providing maximum resilience for 

the system and reducing the cyberattack 

impact. 

Agents Training 

- Modelling Environment: IoTs comprising 

sensors, actuators, and communication 
networks is modelled to present an 
environment where DRL agents can interact. 

States S, actions A, and rewards R define the 

learning environment. 

- Reward System: 

- Positive rewards given for the mitigation of 
attacks, system stability, and resource 

utilization. 

- Negative rewards introduced for delaying 

response, resource wastage, or other such 

actions that result in the failure to prevent the 

disruption of a system. 

1, if attack 
mitigated Rt  1,if 
attack successful 

 
Algorithms and Architectures 
- Deep Q-Networks: Discrete action spaces are 
used for node isolation and communication 

channel switching. 

- Proximal Policy Optimization: Continuous 

action spaces like dynamic adjustment of 

control parameters during the attack flow are 

handled by PPO. 

- Actor-Critic Methods: Integrates value-based 

methods with policy-based approaches for 

faster convergence and more robust decisions. 

Blockchain-DRL Synergy 
This would be the leverage of the unique 

strengths of both blockchain and DRL in 

enhancement of the general security and 

adaptability of the system. 

- Data Integrity for Training: 
- Blockchain creates one source of verified 

historical and real-time data on which to train 

DRL models. 

- Ensuring that DRL agents are trained based 

on sound data would lead to much more 
effective and secure defense. 

- Decentralized Decision-Making: 

-Agents deployed at various nodes use DRL and, 
therefore, can act independently, while their 
coordination through blockchain scales up the 
defenses uniformly within the network. 

- Smart Contracts for Automated Defense 

- Blockchain smart contracts apply automated 

defensive measures suggested by the DRL 

agents. Once a DRL agent detects an attack, 

for instance, a smart contract may 

automatically change the setting of the 

network or notify the operators. 

- Adaptive Policies: 
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- DRL updates its policies continuously from 
the new attack data recorded in the 
blockchain to keep the system updated 
against emerging threats. 

Workflow of the Implementation 
1. Data Collection and Storage: 

- IoTs stream data to the blockchain ledger for 
secure, tamper-proof storage. 

2. Model Training: 

• DRL models learn from historical and real-

time data of the blockchain to develop 

optimal solutions with regard to attack 

detection and response. 

3. Deployment: 

• Trained DRL agents are deployed across the 
IoTs network. The correctness of final 

decisions is checked and executed through 
smart contracts on the blockchain. 

4. Continual Learning: 

- DRL agents' policies are updated with the 

newest information on the blockchain as new 
attack scenarios are encountered to keep it 

adaptive. 

Advantages of Blockchain-Based DRL 

- Scalability: The decentralized nature of 
blockchain and distributed operation of the 

DRL agents ensure that the system can be 
easily scaled up for large IoTs environments. 

- Robustness: Immutability of blockchain 
enhances the reliability of DRL model training 

and decision-making. 

- Real-Time Defense: The DRL agent provides 

an adaptive and fast response against agile 

threats with reduced attack impact. 

- Automation: Defensive actions are 

automatically executed by smart contracts that 

reduce human interaction. 

- Coordination: Blockchain enables 

coordination between multiple DRL agents in 
a distributed IoTS network. 

By integrating blockchain with DRL, IoTs will 
have a robust and adaptive defense 

mechanism. The blockchain layer assures data 

integrity and decentralization, while the DRL 

agents provide intelligent and scalable 

responses against cyber-attacks that are 

continuously evolving. This will ensure that 

IoTs remains secure, reliable, and operational 

against sophisticated attacks. 

Results and Evaluation 
The experiments have been carried out with the 
following settings: 

Dataset: IoT Network Intrusion Dataset was 

preprocessed and normalized in order to meet 

the requirements for training and testing phases. 

- Proposed Framework: The architecture 

incorporates blockchain, deep learning (CNN and 

LSTM model), reinforcement learning, and 

game-theoretic methods to ensure strong 

security. 

- Attack Scenarios: 
1. Normal operation-no attack. 

2. FDI attack-system output. 

To detect attacks and distinguish between normal 

and abnormal data, a threshold value (Threshold) 

of 1.5 was considered. This value was chosen in 

such a way that it could identify data that has 

undergone abnormal changes due to attacks. 

The identification criterion is that any data value 

whose absolute value is greater than the 

threshold is identified as abnormal data (attack). 

This threshold value was determined based on 

an initial examination of the data and the 

operating conditions of the system. 

A blockchain network simulation is performed 

in  IoTs. In this simulation, 10 nodes are 

defined, each representing a device. The 

communication between devices is modeled as 

secure transactions. To identify and distinguish 

normal data from abnormal data, the 

transaction data is divided into two categories: 

normal data with the value Secure and 

abnormal data representing attacks with the 

value Compromised. 

Table 1 shows the structure of transactions. In 

this table, the Source and Destination columns 

represent the source and destination devices, 

Transaction_Data represents the transaction 
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status, and Attack_Flag represents whether 

the transaction is normal or abnormal. For 

example, the transaction between devices 

Device_2 and Device_3 is identified as an attack 

and the Attack_Flag value is 1.

Table 1 

Simulated transaction data on the blockchain network 

Source Destination Transaction_Data Attack_Flag 

Device_0 Device_1 Secure 0 

Device_1 Device_2 Secure 0 

Device_2 Device_3 Secure 0 

Device_3 Device_4 Secure 0 

Device_2 Device_3 Compromised 1 

 
In this environment, the actions of the model 
DRLs are divided into two categories: 

1. Action 0: No Action: No defensive action is 
taken. 

2. Action 1: Defensive Action: Defensive 
action is taken. 

In the simulation process, control actions 

are applied based on the reinforcement 

learning policy and the system state is 

updated randomly from the training data. 

This initial state allows the model to adopt 

an optimal policy to reduce risk based on 

the dynamics of real data and the detection 

of attacks. 

To combine blockchain with DRL,a 

simulated model was used. In this model, 

the network transaction data is defined in 

the form of a blockchain, and each 

transaction has the properties Source, 

Destination, Transaction Data, and Attack 

Flag. The DRL model dynamically analyzes 

transactions and applies a defensive action 

with a DRL_Action value of 1 if an attack is 

detected (Attack_Flag value of 1). 

Otherwise, the DRL_Action value remains at 

0.The following table2 shows an example of 

the updated blockchain data after applying 

the DRL model.

Table 2 

Example of the updated blockchain data after applying the DRL 

Source Destination Transaction Data Attack Flag DRL_Action 

Device_0 Device_1 Secure 0 0 

Device_1 Device_2 Secure 0 0 

Device_2 Device_3 Secure 0 0 

Device_3 Device_4 Secure 0 0 

Device_2 Device_3 Compromised 1 1 
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In the above example, the transaction 

between Device_2 and Device_3 is detected 

as an attack (Attack_Flag=1)  and  the  

DRL  model  has  triggered  the  

associated  defensive  action. 

(DRL_Action=1). This approach demonstrates 

the ability of the DRL model to detect and 
respond to cyberattacks in blockchain 
systems. 

Evaluation Scenarios and Results 
System Response under Normal and Attack 
Conditions 
Figure 2 depicts the system behavior at three 

conditions: normal operation and FDI attack. 

From that the following can be obtained: 

Stable and repetitive feature values when the 
system is under normal conditions. 
Severe abnormalities during FDI attacks, 

which in turn is depicted by variation in the 

pattern of features. 

The system is capable of detecting such 
variations and isolating them so that 

operations remain safe.
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Figure 2. System Response Under No Attack and Attack Scenarios 

System Behavior Under FDI Attack on Output 
Figure 3 shows the system's response to a 

detected FDI attack. The detected attack 

produced manipulated output values well 

outside any normal behavior. The 

framework operated to clearly detect these 

anomalies and thus segregated the 

compromised outputs to ensure appropriate 

system responses.

 

 

Figure 3. System with FDI Attack on Output 
 

Detection of FDI Attacks 
Figure 4 is detection of FDI attacks by the 

proposed detector. The system was able to 

maintain a high detection rate, flagging 

malicious modifications to the output data 

quite well. This quick detection ensured that 

defensive action was timely and hence 

prevented the system from further 

compromise.
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Figure 4. Detection of FDI Attack 

Evaluation Metrics Accuracy and Loss 

The accuracy and loss metrics of training 

and testing are shown in Figures 4 and 5 

Key observations include: 

- High training and testing accuracy, 

indicating that the proposed system is 

very effective in identifying between 
normal and attack scenarios. 

- Low loss values indicate that the proposed 
deep learning models are robust. 

 

Figures 5. Accuracy of training and testing 
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Figures 6. Loss metrics of training and testing 

 
Detection Rate 

The proposed integrated framework was 

effective in detecting FDI attacks, as the 
detection rate of these attacks was high 

throughout. Indeed, both types of attacks 
were correctly detected while minimizing 

false positives and false negatives based in 
Figure 7.

 

 

Figure 7. Detection Rate 

Figure 8 shows the confusion matrix. True 

Negative (green), the number of instances in 

which the system correctly detected normal 

conditions. A relatively high value indicates 

the system’s ability to detect normal 

conditions.

 

False Positive (red), the number of instances 

in which the system incorrectly detected an 

attack, when there was no attack. A high 

value indicates a relatively high false 

positive rate, which may cause false alarms. 

False Negative (orange), the number of 
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instances in which the system failed to 

detect an attack. 

A low value indicates a good ability of the 

system to detect attacks. True Positive 

(blue), the number of instances in which the 

system correctly detected an attack. A low 

value may be due to the complexity of the 

attacks or the limitations of the detection 

model. 

This graph shows that the system performed 
well in detecting attacks and normal 
conditions.
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Conclusion 
The developed methodology involves 

integrating blockchain technology, deep 

learning models, reinforcement learning, and 

game theory into one integrated, multilayer 

security architecture. The system operates in 

the following layers: 

1. Blockchain Layer: This layer enables secure 

and tamper-proof communication channels 

and records in the IoTs. Due to the 

decentralization, the risks concerning single 

points of failure are eliminated, while using 

smart contracts automates responses to 

detected threats, minimizing the response 

time. 

2. Deep Learning Layer: These include real-

time anomaly detection using CNNs and LSTM 

networks. All these models are trained to 

identify normal system behaviors from those 

that signal an attack with unparalleled 

accuracy and very low false alarms. 

3. Reinforcement Learning Layer: Adaptive 

decision-making is performed by DRL. The 

system can make changes to dynamically 

adapt to the evolving attack vectors, such as 

FDI attacks, and turn the defense mechanisms 

proactive. 

4. Game-Theoretic Layer: Attack-defense 
interactions are modeled using Nash 

Equilibrium and Stackelberg game theory. It 
leads to optimal resource allocation and 
strategic decision making to efficiently 
mitigate the attacks. 

The system's performance was evaluated 
using the IoT Network Intrusion Dataset 
simulating normal operations and attack 

scenarios: 

1. Detection Rate: The detection rate for FDI 

attacks remained consistently high throughout 

the evaluation, confirming the system's 

effectiveness in identifying malicious activities. 

The framework successfully minimized false 

positives and false negatives, enhancing its 

reliability in real-world applications. 

2. False Positive and Negative Rates: The code 

extensively measured these metrics, indicating 

a small rate of false positives and only a few 

missed detections. This allows the system to 

ensure that valid activities will not be classified 

as false, helping maximize the efficiency of 

operations. 

3. Scalability: The modular architecture 

present in the framework has proved 
scalable, fully integrative with IoTS 
architectures, and extendable for system 

growth. 

4. Efficiency: The system could detect and 
mitigate attacks in runtime with efficiency; 
thus, it is practically applicable to large-scale 
IoTS environments. 

6. Future Work Direction 

While the proposed framework has been 

effective, there are some points that require 
further exploration to enhance the capabilities 

and adapt to future challenges: 

1. Advanced Threat Scenarios: Future work 

can also be directed to the extension of the 

current framework for complex scenarios 

including multivector attack, insider threat, 

and APTs. 

2. Hybrid Models: Integration of hybrid 
models involving deep learning with graph-

based approaches would help in better 

anomaly detection accuracy and scalability. 

3. Optimization: Blockchain-based IoTs 
solutions may bring extra computation and 
energy overhead. In the future, energy-

efficient blockchain consensus mechanisms 

could be studied, such as PoS or DAGs. 

The proposed framework has already 

demonstrated practical feasibility and 

scalability through extensive evaluations. Its 

layered approach comprehensively covers 

security against all critical cyber attacks, while 

the integration of blockchain, deep learning, 

and game theory makes this framework highly 

robust and adaptive. Addressing the 

challenges outlined in future work, this 
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framework can indeed open ways to secure, 

resilient, and efficient IoTs operations in the 

ever- changing panorama of cyber threats. 
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